Impairment of Glucose Tolerance Test During Pregnancy and Serum Assymetric Dimethylarginine Levels

Özeti
Amaç: Asimetrik dimetilarjinin (ADMA), nitrik oksit sentaz (NOS) inhibitörü olup endotel disfonsiyonunu göstermektedir. ADMA diabetli hastalarda yüksek tespit edilmiştir. Bu çalışmada amaçımız, normal glukoz toleranslı, bozulmuş glukoz toleranslı ve gestasyonel diabetli gebe hastalardaki serum ADMA ve Arjinnin düzeyleri arasındaki farkları tespit etmek ve serum ADMA ve Arjininin bebek kiloları ile ilişkisini araştırmaktır. Gereç ve Yöntem: Çalışmamızda 50 gr glukoz tolerans testi normal olan 64 gebe (grup 1, NGT); 50 gr testi yüksek ve 100 gr oral glukoz testi (OGTT) normal olan 33 gebe (bu grup bozulmuş glukoz toleransı olan grup olarak adlandırılmaktadır) (grup 2, IGT) ; ve gestasyonel diabetli 8 gebe (GDM, grup 3) dahil edildi. Gebelerin serum ADMA ve Arjinnin düzeyleri araştırıldı. Bu üç grup arasında istatiksel analiz yapıldı. Bulgular: Serum Arjinnin düzeyleri bozulmuş glukoz toleransı olan grupta (IGT) NGT grubundan anlamlı derecede yüksekti. ADMA düzeyleri GDM grubunda yüksekti ancak istatistiksel olarak anlamlı değişti. Arjinnin ve ADMA düzeyleri arasında korelasyon tespit edildi (r = 0.219; p<0.05). Ayrıca serum ADMA düzeyleri ile ailesel diabet öyküsü arasında istatistiksel olarak anlamlı ilişki tespit edildi (r = 0.217; p<0.05). ADMA, Arjininin düzeyleri ve bebek kiloları arasında ilişki bulunmadı. Tartışma: Bozulmuş glukoz toleranslı (IGT) ve gestasyonel diabeti (GDM) olan grupta ADMA yüksekme eğiliminin döndüğü bir durum olduğu ve özellikle ailesel diabet öyküsü olan, beden kitle indeks (BMI) artmış ve özellikle aile geçkinlikleri daha belirgindir. Bu nedenle bu grupta da bebeğin aile geçkinlikleri ve ailesel diyabetes öyküsü göz önünde bulundurulması gerekmektedir. Anıtşan Kelimeler: Asimetrik Dimetilarjinin; Gestasyonel Diabet; Bozulmuş Glukoz Tolerans; Endotel Disfonsiyon; Arjinin

Abstract
Aim: Assymetric dimethylarginine (ADMA), an inhibitor of nitric oxide synthase (NOS), has been linked to endothelial dysfunction. Our aim in this study was to compare ADMA and arginine levels in normal glucose tolerance, impaired glucose tolerance and gestational diabetes groups and investigate the effect on baby birth weight. Material and Method: Serum ADMA and arginine levels were investigated in 64 patients whose 50-g glucose loading test was normal (group 1, NGT); 33 patients whose 50-g test result was high and those whose 100-g oral glucose tolerance test (OGTT) was normal (group 2, IGT) ; and in 8 patients diagnosed with gestational diabetes mellitus (GDM, group 3). Results: Arginine levels were significantly higher in the IGT group than in the NGT group. ADMA levels were high in the GDM group, but the difference was not statistically significant. There was a statistically significant correlation between arginine and ADMA levels and the ADMA level of those with a diabetes history. No significant relationship was found between ADMA level, arginine and the weight of the infant. Discussions: Although there has not been a clinical status related with nitric oxide deficiency caused by increasing ADMA concentrations, pregnancies with increased body mass indeks (BMI), family history for diabetes and older ages should be carefully monitorized. ADMA tends to increase in patients with IGT and GDM. In addition, blood ADMA and arginine levels do not seem to influence the weight of the infant. Keywords: Asymmetric Dimethylarginine; Gestational Diabetes; Impaired Glucose Tolerance; Endothelial Dysfunction; Arginine

DOI: 10.4328/JCAM.2657

Received: 06.07.2014
Accepted: 06.09.2014
Printed: 01.05.2016

Corresponding Author: Rahime Bedir Findik, Zekai Tahir Burak Education and Research Hospital, Department of Obstetrics and Gynecology, Ankara, Turkey. GSM: +905053166532 E-Mail: drbedir75@yahoo.com
Introduction

Gestational diabetes mellitus (GDM) is a metabolic disease characterised by the impairment of glucose tolerance during pregnancy. Although the American Diabetic Association reports its incidence as 7% in all pregnancies, it is difficult to estimate the actual incidence, since the diagnostic criteria for gestational diabetes are not very clear [1, 2]. GDM is marked by macrosomia, preecclampsia, fetal mortality, placental changes, and increased diabetes risk for the mother in the post-pregnancy period [3, 4].

Nitric oxide synthase (NOS) is located in the brain and cerebral arteries and catalyzes the synthesis of nitric oxide (NO) from L-arginine. NO plays an important role in the maintenance of vascular homeostasis by controlling the vascular tonus. It also prevents platelet aggregation, leukocyte–endothelium interaction, and vascular smooth muscle cell proliferation, which are important steps in the development of atherosclerosis [5]. Asymmetric dimethylarginine (ADMA) is a competitive endogenous inhibitor of endothelial NOS and decreases endothelial NO synthesis and bioavailability [6]. High ADMA values are associated with endothelium dysfunction.

Age, diabetes mellitus (DM), hypertension, carotid arterial intima-media thickness, hyperlipidemia, hyperhomocysteinemia, obesity, inflammation, and sickle cell disease were found to be associated with increased blood ADMA levels [7, 8]. ADMA levels were also reported to be high in metabolic syndrome and preeclampsia [9, 10]. Type 2 diabetes and insulin resistance were found to be associated with endothelium dysfunction [11–13]. This relationship is characterised by a decrease in NO. In recent studies, a relationship between ADMA and insulin resistance has also been found [14, 15]. ADMA levels were also found to be high in patients with a previous history of gestational diabetes and those with gestational diabetes [16–19]. In one recent study, ADMA levels were found to be high in patients with impaired glucose tolerance (IGT), which was related to high insulin levels [2]. In gestational diabetes, micro and macrovascular endothelial dysfunction have been found but clear information could not be obtained [20, 21].

In the present study, which was planned based upon the aforementioned findings, serum ADMA levels of GDM patients, those with IGT, and normal pregnant women were examined, and their serum arginine levels were compared. Our aim was to compare ADMA and arginine levels in pregnant women with IGT who are accepted normal in routine clinical practice and investigate the effect of these parameters on baby birth weights. Drawing upon the fact that GDM leads to placental endothelial dysfunction, infants were investigated. In addition, the relationship between body mass index (BMI), a family history of diabetes, weight gain during pregnancy, and age factors, and serum ADMA and arginine levels were determined.

Material and Method

Pregnant women referred to the pregnancy outpatient clinic of Kecioren Education and Research Hospital between May 2012 and September 2012 were included in the present study and were allocated to one of three groups. Group 1 included 64 patients with normal 50-g glucose loading test results; group 2 (the IGT group) included 33 patients with high 50-g test results and normal 100-g test (OGTT) results; and group 3 (GDM) included 8 patients with the diagnosis of GDM. The diagnosis of GDM was made with at least two high values after a 100-g 3-hour OGTT according to the Carpenter/Cousten criteria [22] (the references, fasting blood sugar: 95; 1-hour blood sugar: 180 mg/dl; 2-hour blood sugar: 155 mg/dl; 3-hour blood sugar: 140 mg/dl). For the 50-g glucose screening test, the cut-off value was considered as ≥ 140 mg/dl blood sugar.

Ethical approval was in accordance with the Helsinki Declaration and the informed consent of the patients was obtained. Patients with a history of diabetes, chronic renal failure, hypertension, and other chronic inflammatory diseases were excluded from the study. Names and family names, ages, gestational weeks, the number of pregnancies, BMI, weight gained until the present week of pregnancy, smoking status, family history of diabetes, and the weight of infants after term births were recorded for all patients.

Measurement of ADMA and arginine. Blood samples were obtained from patients and controls, and were transferred to plain tubes. Sera from plain tubes were separated after centrifugation at 3000 g for 10 minutes and used for ADMA and arginine analyses. Samples were stored at −20 °C, and serum ADMA and arginine levels were analyzed on the same day on an Applied Biosystems MDS SCIEX(USA) API 3200 LC-MS/MS system in electrospray ionization (ESI) positive mode with an Agilent Eclipse XDB-C18 analytical colon [23]. In brief, a 100-µL serum sample was deproteinized with acetonitrile and centrifuged. The supernatant was derivatized with hydrochloric acid (HCl)/n-butanol at 65 °C, dried under nitrogen (N2), dissolved in the mobile-phase solution, and analyzed by chromatographic separation in the LC-MS/MS system. According to this method, the intra-day coefficient of variation (CV) and inter-day CV were 3.9% and 6.2%, respectively.

Statistics: A Kolmogorov–Smirnov test was performed before the analysis and the differences between the groups were compared using the Kruskal–Wallis and Mann Whitney U tests for non-parametric variables, and analysis of variance (ANOVA) for the parametric variables. The SPSS 16.0 program was used for all of the statistical analyses.

Results

According to the statistical analysis, the mean age and BMI in both group 2 and group 3 were significantly higher than in group 1 (control group). Arginine levels were significantly higher in group 2 (IGT) than in group 1. Group 3 (GDM) also yielded higher results. However, the difference was not statistically significant. ADMA levels were also higher in group 3 but they were not statistically significant. The reason for this could be due to the small number of patients in group 3 (Table 1). Arginine levels correlated significantly with ADMA levels (r = 0.219; p<0.05) and ADMA levels correlated with DM history (r = 0.217; p<0.05). BMI correlated with age (r = 0.415; p<0.001) and DM history (r = 0.191; p<0.05). No significant relationship was found between fetal weight and ADMA and arginine levels.

Discussion

Normal pregnancy is characterised by low systemic vascular
resistance and a decrease in blood pressure. NO plays a part in the adaptation of the vessels during pregnancy. NO synthesis is inhibited by ADMA and ADMA significantly increases with endothelial dysfunction [24–26].

Based upon the studies reporting that ADMA is high and NO decreases in patients with diabetes [7, 8], ADMA levels were compared between normal pregnant women and those with IGT and GDM. ADMA levels were found to be higher in the GDM group compared to those in normal pregnant women. This result may be attributed to the low number of cases in the GDM group. Although in previous studies, in pregnant women with IGT, ADMA levels were found to be high [2], in the present study which may be related to the significantly high arginine levels in this group (p = 0.003). According to the results of the correlation analysis (Table 2), arginine levels seem to be related to ADMA values. When fetoplacental macro and microvascular dysfunction are taken into consideration, it can be stated that group 2 patients (IGT group) who are still being followed up as part of a previous study on the importance of ADMA in fetoplacental circulation, the risk continues after birth, and those women are considered to have a high risk of cardiovascular disease [28]. There is a previous study on the importance of ADMA in fetoplacental resistance and a decrease in blood pressure. NO plays a part in the adaptation of the vessels during pregnancy. NO synthesis is inhibited by ADMA and ADMA significantly increases with endothelial dysfunction [24–26].

Based upon the studies reporting that ADMA is high and NO decreases in patients with diabetes [7, 8], ADMA levels were compared between normal pregnant women and those with IGT and GDM. ADMA levels were found to be higher in the GDM group compared to those in normal pregnant women. This result may be attributed to the low number of cases in the GDM group. Although in previous studies, in pregnant women with IGT, ADMA levels were found to be high [2], in the present study which may be related to the significantly high arginine levels in this group (p = 0.003). According to the results of the correlation analysis (Table 2), arginine levels seem to be related to ADMA values. When fetoplacental macro and microvascular dysfunction are taken into consideration, it can be stated that group 2 patients (IGT group) who are still being followed up as part of a previous study on the importance of ADMA in fetoplacental circulation, the risk continues after birth, and those women are considered to have a high risk of cardiovascular disease [28]. There is a previous study on the importance of ADMA in fetoplacental resistance and a decrease in blood pressure. NO plays a part in the adaptation of the vessels during pregnancy. NO synthesis is inhibited by ADMA and ADMA significantly increases with endothelial dysfunction [24–26].

Based upon the studies reporting that ADMA is high and NO decreases in patients with diabetes [7, 8], ADMA levels were compared between normal pregnant women and those with IGT and GDM. ADMA levels were found to be higher in the GDM group compared to those in normal pregnant women. This result may be attributed to the low number of cases in the GDM group. Although in previous studies, in pregnant women with IGT, ADMA levels were found to be high [2], in the present study which may be related to the significantly high arginine levels in this group (p = 0.003). According to the results of the correlation analysis (Table 2), arginine levels seem to be related to ADMA values. When fetoplacental macro and microvascular dysfunction are taken into consideration, it can be stated that group 2 patients (IGT group) who are still being followed up as part of a previous study on the importance of ADMA in fetoplacental resistance and a decrease in blood pressure. NO plays a part in the adaptation of the vessels during pregnancy. NO synthesis is inhibited by ADMA and ADMA significantly increases with endothelial dysfunction [24–26].

Based upon the studies reporting that ADMA is high and NO decreases in patients with diabetes [7, 8], ADMA levels were compared between normal pregnant women and those with IGT and GDM. ADMA levels were found to be higher in the GDM group compared to those in normal pregnant women. This result may be attributed to the low number of cases in the GDM group. Although in previous studies, in pregnant women with IGT, ADMA levels were found to be high [2], in the present study which may be related to the significantly high arginine levels in this group (p = 0.003). According to the results of the correlation analysis (Table 2), arginine levels seem to be related to ADMA values. When fetoplacental macro and microvascular dysfunction are taken into consideration, it can be stated that group 2 patients (IGT group) who are still being followed up as part of a previous study on the importance of ADMA in fetoplacental
List of abbreviations:
ADMA: Asymmetric dimethylarginin
NOS: Nitric oxide synthase
GDM: Gestational diabetes mellitus
NGT: 50-g glucose loading test was normal
OGTT: 100-g oral glucose tolerance test
NO: Nitrite oxide

Competing interests
The authors declare that they have no competing interests.

References
2. Sertkaya AC, Kafkasli A, Turkuoglu I, Karabulut AB. Asymmetric dimethylargi-
population based survey of outcome of pregnancy in diabetic women: results of the Northern
6. Leiper J, Vallance P. Biological significance of endogenous methylarginines that inhibit
7. Kielstein JT, Zoccali C. Asymmetric dimethylarginine: a cardiovascular risk fac-
N, González DR, Moore-Carrasco R. Elevated concentration of asymmetric di-
9. Aktor T, Atzet M, Tati E, Kaplan M, Turan FN, Barutcu A, Atakan IH, Demir M,
Gerfo FW, Horton ES, Veves A. Microvascular and macrovascular reactivity is re-
11. Hogikyan RV, Galecki AT, Pitt B, Halter JB, Greene DA, Supiano MA. Specific im-
WR, Andrews JW, Hayes JR. Impaired endothelium-dependent and independent
ison GM, Tsao PS. Relationship between insulin resistance and an endogenous nitric
M, Kautzky-Willer A. Circulating concentrations of asymmetrical dimethyl-L-ar-
ginine are increased in women with previous gestational diabetes. Diabetologia 2002;45(10):1372-8.
association between serum asymmetric dimethyl arginine levels and a his-
Demehri S, Wagner O, Wolzt M. Elevated concentrations of asymmetric dimethyl-
18. Akturk M, Altinova A, Mert I, Dincel A, Sangin A, Buyukkagdagci U, Arslan M, Dan-
F, Guzmán-Gutiérrez E, Leiva A, Casanello P. Review: Differential placental macro-
vascular and microvascular endothelial dysfunction in gestational diabetes. Placenta 2011;32(2):159-64.
20. Leiva A, Pardo F, Ramírez MA, Farías M, Casanello P, Sobrevia L. Fetalplac-
ental vascular endothelial dysfunction as an early phenomenon in the pro-
gression of human adult diseases in subjects born from gestational diabetes mellitus or obesity in pregnancy. Exp Diabetes Res 2011;2011:349286. doi: