Mukopolisakkaridozlu Çocuklarda KBB Uzmanının Rolü; Derleme

Mukopolisakkaridoz'da KBB'nin Rolü / Role of the Otolaryngologist in Mucopolysaccharidoses

Mahfuz Turan, Mehmet Fatih Garça, Hakan Çankaya
Department of Otolaryngology, Medical Faculty Hospital of Yüzüncü Yıl University, Van, Türkiye

Özet

Anahtar Kelimeler
Mukopolisakkaridoz; KBB; Adenotonsil Hipertrofisi; Otolojik Problemler; Havayolu Problemleri

Abstract
Mucopolysaccharidoses (MPSs) is a rare group of disorders with a very high percentage of otolaryngologic symptoms and signs. Otolaryngologists play an integral role in the multidisciplinary approach to the diagnosis and management of many children with MPS disorders. Children with MPSs are born without typical symptoms and develop a variety of symptoms over time. Otolaryngological manifestations of MPSs disorders may be especially considered adenotonsilar hypertrophy, otological problems, and airways problems. Otolaryngologic problems and their treatments evaluated on MPSs patients in this article.

Keywords
Mucopolysaccharidoses; Otolaryngology; Adenotonsilar Hypertrophy; Otological Problems; Airways Problems
Introduction
Mucopolysaccharidoses (MPSs) represent a clinically diverse group of metabolic disorders within genetically inherited lysosomal storage diseases [1]. This disorders have an overall incidence reported as anywhere from 1 in 150,000 to as high as 1 in 10,000 live births with geographical differences in the frequencies of specific types [1,2]. Although MPSs are rare, the structures of the head and neck are nearly always involved. As a result, otolaryngologists are commonly the first clinicians to whom these individuals present. Otolaryngological manifestations certainly exert an effect on quality of life issues, perhaps more important is the recognition and management of upper airway obstruction, which may range from varying degrees of obstructive sleep apnea to life-threatening airway emergencies [3]. The aim of this article is to evaluate otolaryngologic problems (hearing, adenoid and tonsil hypertrophy, upper airway obstruction) and their treatments in MPSs patients.

Pathophysiology
MPSs are lysosomal storage disorders caused by deficiency of enzymes involved in the degradation of glycosaminoglycans (GAGs). The primary GAGs (dermatan sulfate, heparan sulfate, keratan sulfate, and hyaluronic acid) are an important constituent of the extracellular matrix, joint fluid, and connective tissue throughout the body [4,5]. This metabolic block leads to the accumulation of GAGs in lysosomes, resulting in cell, tissue and organ dysfunction. Musculoskeletal system, nervous system, heart, lung, eye and otolaryngologic involvement are common effected [5,6]. Hence clinical manifestations may be quite variable and are often multisystem. MPSs are heterogeneous group of autosomal-recessive disorders (except for MPS II, which is X-linked-recessive) [3]. Seven types have been described to date (Table 1). Each disorder is caused by a deficiency of a specific enzyme required for GAG degradation [3]. It has a continuum of clinical manifestations from mild form to severe. The ubiquitous nature of GAGs in the body’s connective tissues gives rise to a wide phenotypic spectrum usually characterized by coarse facial features, liver and spleen enlargement, bone deformities with subsequent reduction of joint mobility, variable mental retardation and cardiac and ophthalmologic involvement [5,7]. Predominantly a disease of childhood, clinical features are frequently absent at birth, appearing gradually as the disease progresses along an unrelenting course that commonly ends with death before adulthood [4].

Importance of the otolaryngology
MPS is a rare group of disorders with a very high percentage of otolaryngologic symptoms and signs [6]. Otolaryngologists play an integral role in the multidisciplinary approach to the diagnosis and management of many children with MPS disorders. The most common otolaryngologic complaints of MPS patients are airway problems include obstructive sleep apnea (OSA), otitis media with effusion, sinusitis, frequent respiratory infections, adenotonsillar hypertrophy, irregular nasal septum, turbinate hypertrophy, speech disorders, dyspnea, restricted temporomandibular joint motion, thickened pharyngeal wall, laryngeal abnormalities, tracheomalacia, tracheal stenosis and short neck [3,5,8,9]. Otolaryngological disorders are extremely frequent, mostly in MPS I, II and VI, and are often the earliest clinical manifestations of these diseases [3]. Mesolella et al. [10] concluded that ear, nose and throat manifestations in all types of MPS; in particular, recurrent otitis media was present in 30% of cases, hearing loss in 75% (mixed in 43.33%, conductive in 43.33%, sensorineurin in 13.33%), adenotonsillar hypertrophy in 75%, frequent infections of the upper airway in 75% and obstructive sleep apnea syndrome in 45% of cases. Otolaryngologists are commonly the first clinicians to whom these individuals present [11-13]. Increased awareness of the features of MPS by otolaryngologists will lead to earlier diagnosis. Early diagnosis, as well as having important implications for the affected individual and surgical treatment of processes often significantly enhances the quality of life of these children. They often have a number of the patients undergo adenoidectomy, tonsillectomy or ventilation tube insertion prior to diagnosis the histological examination of the tissue could lead to an earlier diagnosis [12,14]. Children with MPSs are born without typical symptoms and develop a variety of symptoms over time. Otolaryngological manifestations of MPSs disorders may be especially considered adenotonsillar hypertrophy, otological problems, and airways problems.
Excessive GAGs deposition however it may result from GAGs accumulation in the cochlea, Sensorineural hearing loss (SNHL) aetiology remains unclear in chronic otitis media [18].

To confer a higher risk of persistent perforation and subsequent chronic otitis media [18]. Sensorineural hearing loss (SNHL) aetiology remains unclear however it may result from GAGs accumulation in the cochlea.

Insertion of ventilation tubes can improve CHL resulting from chronic otitis media with effusion but ventilation tubes with or without adjuvant adenoidectomy will obviously not ameliorate SNHL, either alone or as a component of mixed hearing loss [21].

Adenotonsillar hypertrophy

Adenotonsillar hypertrophy is almost universal in this group of patients due to the deposition of GAGs [6]. Therefore, adenoidectomy and tonsillectomy are among the most commonly performed operations in patients with MPS, often prior to diagnosis [12]. Patients with MPS have significantly smaller retropalatal and retroglossal spaces compared to healthy persons [9]. Radiological and endoscopic examination may play an important role by evaluating backward displacement of posterior tonsillar pillars toward the posterior oropharyngeal wall; thus, during endoscopy may determine the percentage of oropharynx tonsils are occupying in sagittal axis [12]. Gönüldağ et al. [6] discovered that most of the tonsils enlargement was toward the tonsillar bed instead of the lumen in MPS patients; thus indicating that actual tonsil size might be larger than it appeared on oropharyngeal examination. Therefore more careful oropharyngeal examination on MPS patients whose tonsils appear to be grades 1 and 2, because tonsils contribute a lot to airway obstruction.

MPS patients also have odontoid hypoplasia which predisposes them to atlantoaxial dislocation. Therefore, the surgeon has to be careful while inserting mouth gag and extending head on neck during adenotonsillectomy [6]. Tonsillectomy should not be performed on MPS patients with severe mouth opening restriction. In case of possible postoperative hemorrhage intubation of the patient and control of bleeding may be very difficult or even impossible [6].

After adenoidectomy in normal population recurrence rate is between 0.55 and 1.5% [23]; however, the recurrence rate in our MPS population is 56% [6]. Despite recurrence the need for revision surgery is rather low in MPS patients. Although this mechanism does not appear to explain Monroy at al claimed that recurrent adenoid did not as much obstruct choana as pre-op adenoid tissue [24].

Upper-airway obstruction

MPS patients have airway narrowing due to GAGs accumulation in airway walls [6,25]. Deposition of the GAGs in the walls of the pharynx and larynx can cause alterations of normal airway function [5]. This changes in soft tissues including tonsils, adenoids, tongue, lingual tonsils, larynx and trachea are responsible for most respiratory problems. As the disease progresses, pharyngomalacia and tracheomalacia may develop and become severe, leading to significant airway obstruction [26]. Additionally, facial features, predominantly found in MPS I, II, VI and VII, include the macro- and retroglossia and the unfavourable ratio of tongue size to oral cavity predispose to pharyngeal collapse (pharyngomalacia) and obstructive sleep apnea [15].

Involvement of the larynx is almost universal in severe forms of MPS I and II, whereas it is less severe in other forms of MPS [15]. Laryngomalacia, typically caused by the GAGs deposits in epiglottis and arytenoid mucosa was expanded and flaccid, so that it prolapsed into the laryngeal inlet causing glottic stenosis [5].

OSA evaluation should begin with history and physical examination. However, airway evaluation is very difficult, typically non-uniform among different providers and varies from case to case.

Table 1: Mucopolysaccharidoses Syndrome

<table>
<thead>
<tr>
<th>MPS type</th>
<th>Subtypes</th>
<th>Eponym</th>
<th>Enzyme deficiency</th>
<th>Storage material</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPS I</td>
<td>MPS I H</td>
<td>Hurler</td>
<td>Iduronidase</td>
<td>Dermatan sulphate, Heparan sulphate</td>
</tr>
<tr>
<td></td>
<td>MPS I S</td>
<td>Scheie</td>
<td>Iduronidase</td>
<td>Dermatan sulphate, Heparan sulphate</td>
</tr>
<tr>
<td></td>
<td>MPS I H/S</td>
<td>Hunter—Scheie</td>
<td>Iduronidase</td>
<td>Dermatan sulphate, Heparan sulphate</td>
</tr>
<tr>
<td>MPS II</td>
<td>Hunter</td>
<td></td>
<td>Iuronidate sulphate sulphatase</td>
<td>Dermatan sulphate, Heparan sulphate</td>
</tr>
<tr>
<td>MPS III</td>
<td>MPS III A</td>
<td>Sanfilippo</td>
<td>Heparan-N-sulphatase</td>
<td>Heparan sulphate</td>
</tr>
<tr>
<td></td>
<td>MPS III B</td>
<td>Sanfilippo</td>
<td>N-acetylgalactosaminidase</td>
<td>Heparan sulphate</td>
</tr>
<tr>
<td></td>
<td>MPS III C</td>
<td>Sanfilippo</td>
<td>Acetyl-CoA-glucosaminidase acetyltransferase</td>
<td>Heparan sulphate</td>
</tr>
<tr>
<td></td>
<td>MPS III D</td>
<td>Sanfilippo</td>
<td>N-acetylglucosams-6-sulphatase</td>
<td>Heparan sulphate</td>
</tr>
<tr>
<td>MPS IV</td>
<td>MPS IV A</td>
<td>Morquio A</td>
<td>Galactosamine-6-sulphatase</td>
<td>Keratan sulphate</td>
</tr>
<tr>
<td></td>
<td>MPS IV B</td>
<td>Morquio B</td>
<td>B-galactosidase</td>
<td>Keratan sulphate</td>
</tr>
<tr>
<td>MPS VI</td>
<td>Maroteaux-Lamy</td>
<td></td>
<td>N-acetylgalactosamine-4-sulphatase</td>
<td>Dermatan sulphate</td>
</tr>
<tr>
<td>MPS VII</td>
<td>Sly</td>
<td></td>
<td>B-glucuronidase</td>
<td>Dermatan sulphate Heparan sulphate, Chondroitin sulphate</td>
</tr>
<tr>
<td>MPS IX</td>
<td>Natowicz</td>
<td></td>
<td>Hyaluronidase</td>
<td>Hyaluronic acid</td>
</tr>
</tbody>
</table>

Journal of Clinical and Analytical Medicine | 903
the degree of ostruction should be studied with polysomnography, Lin et al. [27] determined 88% moderate to severe OSA, while Yeung et al determined 55% moderate to severe OSA on MPS patients depending on poly-
sonomographic data [28]. Additionally, Mesolella et al. [10] determined upper airway obstruction in 75% of cases while literature data describes percentages varying from 38% to 48% to 92%
[29]. Pelley et al. [30] concluded that symptoms during sleep were not associated with PSG findings, which suggested that
this population should undergo routine PSG as early as possible.
Adenotonsillectomy is the initial treatment of choice, although it does not always resolve the condition due to the multifactorial
origin of the obstruction, with nocturnal noninvasive ventilation being recommended in such cases [5]. Despite adenotonsillec-
tomy being a routine procedure in most children, the risks are usually higher in an MPS child including post-operative hemor-
rhage, airway edema, and failure to extubate [31]. The initial intervention is often adenotonsillectomy, which may provide temporary improvement. Subsequent steps in MPS patient may include continuous positive airway pressure or bi-level positive airway pressure. Ultimately tracheotomy may be required to re-
lieve severe upper airway obstruction during wakefulness [15].

Tracheotomy
Tracheotomy, which is typically performed for severe upper air-
way obstruction, may alleviate tracheal narrowing by stenting the component caused by tracheal collapse. Tracheal stenosis is
also be narrowing of the tracheal lumen due to GAG deposi-
tion in the wall and may lead to tracheomalacia [8,32]. With progressive tracheomalacia a regular tracheostomy tube may
be insufficient and attempts have been made to bypass the ob-
struction with longer and wider tracheostomy tubes [8]. These carry the risk of mucosal irritation and injury potentially result-
ning in granulation tissue and further accumulation of GAG de-
positions. Tracheotomy is also a difficult operation in MPS patients; be-
cause the neck is short and with neck extension and lowest pos-
sible cervical incision the surgeon only reaches cricoid cartilage, thus high tracheotomy is almost unavoidable, carrying the risk of laryngotracheal stenosis [6]. Additionally, MPS patients also have odontoid hypoplasia which predisposes them to atlanto-
axial dislocation. Therefore, the surgeon has to be careful while giving the position on head and neck during tracheotomy [6].
Finally, otolaryngologists must be familiar with the symptoms and signs related to MPS. They should have a basic knowledge of MPS in order to avoid the possible complications of otolar-
yngologic treatments.

Competing interests
The authors declare that they have no competing interests.

References
1. Shinhar SY, Zablacki H, Maday DN. Airway management in mucopolysaccharide
3. Meunzer J. The mucopolysaccharidoses: a heterogeneous group of disorders
4. Shihi SL, Lee YJ, Lin SP; Sheu CY, Blckman JG. Airway changes in children with
of patients with mucopolysaccharidoses demonstrate typical alterations. Int J Pedi-
G, Iengo M. Management of otolaryngological manifestations in mucop-
7. Keilmann A, Nakatari T, Bruce IA, Molter D, Malm G, HOS Investigators. Hear-
ing loss in patients with mucopolysaccharidosis II: data from HOS – the Hunter
ES et al. A clinical study of 77 patients with mucopolysaccharidoses type II. Acta
9. Walker RK, Darowski M, Morris P, Wraith JE. Anaesthesia and mucopolysacchari-
doses. A review of airway problems in children. Anaesthesia 1994;49(12):1078-
84.
10. Jassar P, Coatesworth A, Stachan DR. Long-term ventilation of the middle ear
using a subungular tympanotomy technique: a follow-up study. J Laryngol Otol
11. Friedmann I, Spellacy E, Crow J, Watts RW. Histopathological studies of the
temporal bones in Hunter’s disease [mucopolysaccharidosis (MPS) I]. J Laryngol
12. Ruckenstein MJ, Macdonald RE, Clarke JT, Forte V. The management of oto-
laryngological problems in the mucopolysaccharidoses: a retrospective review. J
SP. Assessment of hearing loss by pure-tone audiometry in patients with mucopoly-
KM, Jones SA, Bruce IA, Feasibility of cochlear implantation in Mucopolysac-
15. Liapi A, Dhanasekar A, Turner NG. Role of revision adenotonsillectomy in paediat-
17. Morimoto T, Kurimura M, Kosuga M, Okayama T, CT and endoscopic eval-
18. Pelley C, Kwo J, Hess DR. Tracheomalacia in an adult with respiratory failure
and Morquio syndrome. Respir Care 2007;52(3):278-82.
HC, Lin SP. Polysomnographic characteristics in patients with mucopolysacchari-
during sleep in patients with mucopolysaccharides. Int J Pediatr Otorhinolaryn-
22. Pelley C, Kwo J, Hess DR. Tracheomalacia in an adult with respiratory failure
and Morquio syndrome. Respir Care 2007;52(3):278-82.
KM, Jones SA, Bruce IA. Catheterization in Mucopolysaccharidosis. J Laryngol
25. Morimoto T, Kurimura M, Kosuga M, Okayama T, CT and endoscopic evalu-
and Morquio syndrome. Respir Care 2007;52(3):278-82.
27. Lin HY, Chen MR, Lin CC, Chen CP, Lin DS, Chuang CK, Liu NM, Chang JH, Lee
HC, Lin SP. Polysomnographic characteristics in patients with mucopolysacchari-
29. Leighton SE, Papkin B, Veltiš A, Dinwidie R, Lane R. Oesophageal breathing
during sleep in patients with mucopolysaccharides. Int J Pediatr Otorhinolaryn-
30. Pelley C, Kwo J, Hess DR. Tracheomalacia in an adult with respiratory failure
and Morquio syndrome. Respir Care 2007;52(3):278-82.
KM, Jones SA, Bruce IA. Catheterization in Mucopolysaccharidosis. J Laryngol
32. Niagano R, Takizawa S, Hayama N, Kumura S, Uesugi T, Nakagawa S, Okamoto S, Yanagimachi N, Takagi S. Three-dimensional CT and histopatho-
logical findings of airway malacia in Hunter syndrome. Tokai J Exp Clin Med

How to cite this article:
Turan M, Garça MF, Çankaya H. Role of the Otolaryngologist in Children with