Prenatal diagnosis of congenital cystic adenomatoid malformation of the lung

Prenatal tanılı konjenital kistik adenomatoid malformasyonu

Öz

Anahtar Kelimeler
Konjenital Kistik Adenomatoid Malformasyon, Prenatal Tanı, Hiperekojen Akiğer Hastalıkları

Abstract
Congenital cystic adenomatoid malformation (CCAM) is the hamartomatous proliferation of terminal respiratory bronchioles and represents a quarter of congenital lung diseases. On prenatal ultrasonography, uniform hyperechoic mass, variable echogenic cysts, or multicystic mass surrounded by echogenic stroma may be observed. This case report illustrates prenatal diagnosis of a microcystic-type CCAM in a 30-year-old female patient, pregnant with twins (week 20), and confirmed by the microscopic examination of autopsy. The US scan showed a hyperechoic mass filling the left hemithorax completely and causing a moderate mediastinal shift. The right lung was of a normal sonographic structure, and there was no pleural effusion or additional pathology detected. This report has reviewed the causes of hyperechogenic lung diseases of neonatals with a presentation of the prenatal US findings of a case of CCAM.

Keywords
Congenital Cystic Adenomatoid Malformation, Prenatal Diagnosis, Hyperechoic Lung Diseases
Introduction
Congenital cystic adenomatoid malformation (CCAM) is the hamartomatous proliferation of terminal respiratory bronchioles and represents a quarter of congenital lung diseases. Almost 95% of the CCAMs are unilateral. Usually, it is associated with the tracheobronchial tree. As a result of the prevention of alveolar development, cysts occur in the lungs. Cysts are covered by respiratory epithelium [1,2]. Many patients present as respiratory distress in the newborn period. Around 10% of the CCAMs cause recurrent pneumonia with age, while some cases may remain asymptomatic. Many patients present as respiratory distress in the newborn period. Around 10% of the CCAMs cause recurrent pneumonia with age, while some cases may remain asymptomatic. There are three types of CCAMs, which are indicated by the size of the cysts, named macrocystic, microcystic, and mixed-type CCAM [3,4]. On prenatal ultrasonography, uniform hyperechoic mass (microcystic type), variable echogenic cysts (macrocystic type), or multicystic mass surrounded by echogenic stroma (mixed type) may be observed. Cystic masses, especially the microcystic type, can cause mediastinal shift. In this case report, we review prenatal findings of congenital cystic adenomatoid malformation (CCAM) of the lung and hyperechoic lung diseases for which different diagnoses should be considered.

Case Report
A 30-year-old female patient, pregnant with twins (week 20), was admitted to our ultrasound (US) unit for a congenital anomaly scan. The US scan showed a hyperechoic mass filling the left hemithorax completely and causing a moderate mediastinal shift [Figure 1]. The vascularization of the lesion was through the right pulmonary artery. The left lung was of a normal sonographic structure, and there was no pleural effusion or additional pathology detected. According to these findings, we considered a diagnosis of microcystic-type CCAM. Because hydrops and polyhydroamnios were not observed, we recommended close monitoring. It is not possible to comment on the course of the disease prenatally, as the patient did not come to follow-up examinations. The mother gave birth with caesarian section (C/S) in the 25th gestational week. The male infant with advanced growth retardation was intubated due to cyanosis, and dead on the second day of the follow-up, due to the development of hyaline membrane disease.

In the microscopic examination of autopsy, widely hemorrhagic areas and eosinophilic hyaline membrane formations in the alveoli were observed in both lungs [Figure 2a]. In addition, dilated cystic structures covered by respiratory epithelium similar to bronchus were observed in the lower lung lobe of the left lung [Figures 2b, c, d].

Discussion
CCAM is the hamartomatous proliferation of terminal respiratory bronchioles and represents a quarter of congenital lung diseases. Almost 95% of the CCAMs are unilateral. Usually, it is associated with the tracheobronchial tree, but vasculatory structures are normal. As a result of the prevention of alveolar development, cysts occur in the lungs. Cysts are covered by respiratory epithelium [1,2]. As in our case, many patients present as respiratory distress in the newborn period. Around 10% of the CCAMs cause recurrent pneumonia with age, while some cases may remain asymptomatic. There are three types of CCAMs, which are indicated by the size of the cysts, named macrocystic, microcystic, and mixed-type CCAM [3,4]. The best prognosis is where one or more cysts larger than 1 cm are observed (macrocystic CCAM), while solid-looking microcysts indicate the worst prognosis type (microcystic CCAM). On prenatal ultrasonography, uniform hyperechoic mass (microcystic type), variable echogenic cysts (macrocystic type), or multicystic mass surrounded by echogenic stroma (mixed type) may be observed. Cystic masses, especially the microcystic type, can cause mediastinal shift. While macrocystic and mixed types of CCAM may persist during pregnancy, regression is observed in the majority of microcystic CCAM cases [3,5].

Hydrops and polyhydroamnios are common phenomena in microcystic CCAM, as compared to the other types of CCAM. In utero or postpartum exitus is observed in the vast majority of hydrops cases [6].

For differential diagnosis, the other reasons for hyperechogenic lung (congenital high airway obstruction syndrome [CHAOS] and pulmonary sequestration [PS]) should be kept in mind [1,3]. Display of the feeding arteries from the aorta is diagnostic for PS, although PS cannot be excluded just because it is not shown [2]. In CHAOS, hyperechogenic masses are seen in the bilateral hemithorax, while the mediastinum and heart are compressed due to the massive enlargement of the lungs [7].
The treatment for microcystic CCAM is open lobectomy, although US guided laser ablation of the feeding arteries can be applied. In macrocystic and mixed-type CCAMs, a thoracoamniotic shunt may be performed, which has a success rate of 2/3 [4,8]. In our case, in accordance with the literature, a uniform hyper-echogenic mass filling the left hemithorax and displacing the mediastinum to the right was observed on US examination, and respiratory distress appeared after the birth. The premature birth and low birth weight of the infant led to the development of hyaline membrane disease and, as a consequence of that, the clinical condition declined further.

This report has reviewed the causes of hyperechogenic lung diseases of neonatals with a presentation of the prenatal US findings of a case of CCAM.

Competing interests
The authors declare that they have no competing interests.

References

How to cite this article: