Studying the polymorphism of TNF-α and TNF-β genes among people suffering from Helicobacter pylori infection

Nazanin Rashidi Keikanloo1, Jamshid Mehrzad2, Hadi Mohamaddoust3, Azar Fanipakdel4, Mona Malekzadeh Moghani5

1Department of Biology, Damghan Branch, Islamic Azad University, Damghan,
2Department of Biochemistry and Molecular Biology, Neyshabur Branch, Islamic Azad University, Neyshabur,
3Department of Haematology and Oncology, North Khorasan University of Medical Sciences, Bojnord,
4Cancer Research Center, Mashhad University of Medical Sciences, Mashhad,
5Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Aim: One of the most important risk factors proposed for gastric cancer is Helicobacter pylori; however, the correlation between polymorphism of TNF-α and TNF-β with Helicobacter infection has never been studied. The present research seeks to examine the correlation between polymorphism of these two genes in Helicobacter pylori infection and gastric cancer among those suffering from infection with this bacteria. Material and Method: This is a case-control research seeking to study the polymorphism of TNF-α and TNF-β genes among those suffering from Helicobacter pylori infection and compare it to healthy people. Polymorphism genotype of TNF-α-308 and TNF-α+254 genes was studied in 31 healthy cases, 50 cases with H. pylori, and 23 cases with Helicobacter pylori and gastric cancer using ARMS & PCR-RFLP polymerase chain reaction method. Results: According to the results obtained in this research, there is a significant correlation between TNF-308 A/A homozygote genotype and A allele in TNF-308 with H pylori. In other words, there is a correlation between TNF-308 A/A and the possibility of affliction with infection (p < 0.05). The correlation between TNF-308 G/A genotype and TNF-308 A/A and TNF-308 An allele with affliction with gastric cancer and H pylori was also significant (p < 0.05). Discussion: TNF-308 A/A homozygote genotype has a significant correlation with gastric cancer and H pylori. As a matter of fact, TNF-308 A/A has increased the possibility of affliction with H pylori and gastric cancer. A significant correlation was also observed between TNF-308 G/A genotype and TNF-308 A/A and TNF-308 An allele with affliction with gastric cancer and H pylori.

Keywords
Helicobacter Pylori; Gastric Cancer; Polymorphism
Introduction

The genetic differences of people in each population are the major factor determining allergy towards various diseases, whether these diseases are infectious and contagious (like viral hepatitis) or non-contagious (like cancer) [1]. Furthermore, as cancer is caused by multiple factors, it is possible that genetic polymorphisms have a simultaneous interaction with environmental and other genetic factors affecting allergy on affliction with it [2, 3].

Helicobacter pylori is a growing microaerophilic gram-negative microorganism found in the stomach and duodenum, and it is associated with some diseases of stomach and duodenum. One of the most important risk factors playing a major role in causing gastric cancer is Helicobacter pylori bacteria. The role of this bacteria in this disease is so important it has come to be introduced as Class 1 carcinogenic factor by WHO [4]. By producing Cag A protein and entering it into epithelial cells of the stomach, the expression of various genes in these cells undergoes a major change thus affecting the hosting factors and making the individual prone to cancer [5]. Ever since a correlation has been established between Helicobacter pylori infection and gastric cancer, further researchers have sought to study the possibility of an infectious origin for other types of cancer. However, no case with such high level of influence like Helicobacter pylori has ever been introduced. The initial infection with Helicobacter pylori causes mild gastritis, and the resulting inflammation may end in an ulcer. If the pathogenic procedure continues and no measures are taken for appropriate treatment of ulcer, it will cause atrophic gastritis. People suffering from this inflammation are exposed to the danger of malignancy and cancer [6, 7]. Nowadays, various large-scale studies have been conducted on the correlation between genetic changes such as polymorphisms and the risk of affliction with various types of cancer [8]. Polymorphisms have their effect by increasing or decreasing the risk of a disease through several ways [9]. Polymorphisms may play a major role in making people prone to cancer [2]. Necrosis factor of an alpha tumor is an intracellular signaling protein that intervenes in the inflammatory system. The primary role of TNF is to adjust immunity cells. TNF may cause fever, an apoptotic death of the cell, and inflammation. It may also harness viral replication tumor. Failing to adjust TNF production (or lack of accurate correctness of its protein structure) may cause cancer, Alzheimer and bladder inflammation. Beta tumor necrosis factor is a multifunctional Cytokine protein mostly produced by T lymphocytes induced by mitogens or leukocytes. The range of TNF-α and TNF-β activities are identical, although the beta type has fewer capabilities. TNF-β induces interleukin-1 synthesis, collagenase and prostaglandin E2 in fibroblasts. TNF-α and TNF-β have cytotoxic and cytolytic effects on most tumor cells with the only difference being in their level of influence [10].

Dr. Hadi Ghafrani et al. (2003) conducted a research titled “Studying the role of Helicobacter pylori in Gastric Adenocarcinoma in terms of anatomic site” and found no significant difference in prevalence of Helicobacter pylori in cardiac and non-cardiac cancer (70% vs. 73.3%) [11].

A research by Shahrokh Iravani (2013) titled “gastric cancer as a multifactorial disease” found that Helicobacter pylori infection, genetic background and environmental factors such as nutrition and sanity are considered risk factors that cause gastric cancer [12].

In a research by Saito et al. (2000), the effects of eradicating Helicobacter pylori on malignancy of Gastric adenoma was studied. It was finally concluded that eradication of Helicobacter pylori may prevent gastric adenoma from developing into gastric cancer [13].

As the correlation between polymorphisms of TNF-α and TNF-β genes and Helicobacter pylori infection has not been studied so far, the present research seeks to examine the correlation between the two above-said factors to find proper molecular markers for predicting and preventing gastric cancer among those suffering from this bacteria’s infection.

Material and Method

This is a control-case research studying the polymorphism of TNF-α and TNF-β genes among those suffering from Helicobacter pylori infection as the case and healthy people as control group. The statistical population included all the patients with Helicobacter pylori infection resorting to Omid, Ghameh, and Imam Reza hospitals of Mashhad and private clinic of Dr. Hadi Mohammad Doust and Imam Reza Hospital of Bojnourd. As many as 31 healthy cases, 50 cases with positive Helicobacter pylori, and 23 with both gastric cancer and positive Helicobacter pylori were selected for sampling through convenient sampling method. The informed consent of the individuals was obtained, and their demographic information (including age and gender) were asked. Using patients’ files from the hospital, their histopathological information was also written in the questionnaires.

In the next phase, blood samples were made in the above-said therapeutic centers with DNA PCR and Electrophoresis tests conducted on them. Next, polymorphism of TNF-α and TNF-β genes was determined according to RFLP-Restriction Fragment Length (polymorphism) and ARMS (Amplification refractory mutation system) methods in order to determine allele frequency of genotype in case and control groups. The H. pylori level was also determined and recorded in serum samples of patients. The collected information was then analyzed using SPSS v.20.

Results

There were 31 healthy participants in control group, while 50 people with H pylori infection and 23 with gastric cancer and H pylori infection were in case group. Table 1 shows distribution of age frequency and health status. Table 2 represents the health status of the participants. Table 3 shows distribution of age groups in terms of frequency.

<table>
<thead>
<tr>
<th>Table 1. Distribution of the age frequency of participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average age</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>20 to 35</td>
</tr>
<tr>
<td>35 to 50</td>
</tr>
<tr>
<td>50 to 65</td>
</tr>
<tr>
<td>65 to 80</td>
</tr>
<tr>
<td>Older than 80</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
While analyzing the research, two participants disappeared (one healthy person and one with both diseases).

Table 4 shows the frequency distribution of genotype and alleles of -305 G>A polymorphism in TNF gene promoter and 252 A>G in the first intron of LTA (TNF-β) gene among patients with Helicobacter pylori infection and healthy control people in Khorasan province of Iran.

Table 5 represents the frequency distribution of genotype and alleles of -308 G>A polymorphisms in TNF (TNF-α) gene promoter and 252 A>G in the first LTA intron of (TNF-β) gene.

According to Table 5, TNF-308 A/A homozygote genotype and A allele have a significant correlation with H pylori in TNF-308. As a matter of fact, there is a correlation between TNF-308 A/A and the possibility of affliction with infection (P < 0.05).

Table 6 shows the frequency distribution of genotype and alleles of -308 G>A polymorphism in TNF (TNF-α) gene promoter and 252 A>G in the first intron of LTA (TNF-β) gene among patients with Helicobacter pylori infection and healthy control people in Khorasan province.

According to Table 5, the correlation between TNF-308 G/A genotype and TNF-308 A/A genotype and TNF-308 A allele with affliction with gastric cancer and H pylori is significant (P < 0.05).
promoter in -238 and -308 positions in Helicobacter pylori. An analysis of +ureA versus -ureA showed that -308 polymorphism had no significant correlation with Helicobacter pylori infection [15]. This is in line with the results of the current research. However, other researchers have recently shown that a genotype change in -308 position from α-TNF position is more prominent among those patients with positive Helicobacter pylori than those with negative Helicobacter pylori [16, 17]. Therefore, the results may have been influenced by the difference between samples. If the correlation between these polymorphisms and Helicobacter pylori and gastric cancer is proved accurately, the polymorphism of the genes studied in this research is recommended to be taken into consideration as markers and used in clinical examinations.

Conclusion
On the strength of the present research, it can be concluded that the effect of α-TNF in the presence of –AS08 allele on causing cancer is much more than that of –G308. A rise in the density of α-TNF as a result of –AS08 polymorphism can change the defensive reaction of the body and prepare it for gastric infections such as Helicobacter pylori.

Human Rights Statement:
All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Animal Rights Statement: Nonapplicable.

Conflict of Interest Statement:
The authors have no conflict of interest.

Funding: None.

Scientific Responsibility Statement: The authors declare that they are responsible for the article’s scientific content including study design, data collection, analysis and interpretation, writing, some of the main line, or all of the preparation and scientific review of the contents and approval of the final version of the article.

References
12. Iravani S. Gastric cancer as a multifactor disease. The research and scientific magazine of the Iranian Army Medical Sciences University. 2013;11(2):157-64.

How to cite this article: