Aortic stiffness index and diurnal variability (dipper/non-dipper) in hypertensive patients

Turgay Aslan1, Özge Kurmuş1, Cemal Köseoğlu1, Ahmet Göktuğ Ertem1, Mehmet Erdoğan2, Tolga Han Efe1, Mehmet Bilge2

1Department of Cardiology, Ufuk University Faculty of Medicine, Ankara, Turkey
2Department of Cardiology, Ankara Atatürk Training and Research Hospital, Ankara, Turkey

DOI: 10.4328/JCAM.5547 Received: 30.11.2017 Accepted: 05.01.2018 Published Online: 07.01.2018 Printed: 01.03.2018

Abstract

Aim: Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients. In this study, we aimed to evaluate how aortic elasticity parameters [aortic distensibility (AD), aortic stiffness index (ASI), aortic strain (AS)] is affected by the diurnal rhythm of the blood pressure in hypertensive and normotensive individuals without a known cardiovascular disease. Material and Method: In this cross-sectional study, 58 hypertensive and 60 normotensive patients without known cardiovascular disease were enrolled. Ambulatory blood pressure monitoring was performed on hypertensive patients, and transthoracic echocardiography was performed on all study participants. The AD, ASI, and AS were compared between controls, dippers, and non-dippers. Results: In our study, the highest "aortic stiffness index" value was detected in reverse dippers group followed by non-dippers group, dippers group, and control group with regard to age. Also, aortic strain and aortic distensibility values were highest in control group, respectively dippers group, non-dippers group and reverse dippers group. Discussion: We determine there is a relation with the diurnal rhythm of blood pressure and aortic stiffness parameters.

Keywords

Aortic Stiffness; Aortic Elasticity; Dipping Hypertension; Non-Dipping Hypertension; Nocturnal Blood Pressure

This study was previously presented as a poster at the “30th Turkish Cardiology Congress with International Participation” congress held on 23-26 October in Antalya.
Introduction
Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality. It occurs as a result of aging, smoking, hypercholesterolemia, diabetes mellitus and hypertension [1,2]. Increased aortic stiffness or decreased distensibility is indicative of the extensive involvement of atherosclerotic vascular system [3]. It has a decisive importance for vascular disorders such as renal disease, stroke, heart failure and myocardial infarction [4,5].

Ambulatory Blood Pressure Recording: The recorder was programmed to take BP measurements every 15 minutes during the daytime and every 30 minutes during the nighttime. The daytime period was defined as the interval between 6 AM and 12 PM and the nighttime period as between 12 PM and 6 AM. The patients were instructed to attend their usual day-to-day activities, but to keep still and relax their arms at the times of measurements. For the following conditions, the values were not taken into consideration: Systolic BP (SBP) >270 mmHg and <70 mmHg, for diastolic BP (DBP) >150 mmHg and <40 mmHg values; Equal measurements of SBP’s and DBP’s; >30 mmHg differences between the following 2 measurements of SBP’s or DBP’s. If the acceptable BP values were over 14 at daytime and over 7 at night, records were considered adequate.

Echocardiographic Examination: The echocardiographic examinations were obtained using “General Electric Vivid 7” with a multifrequency transducer (2.5–3.5 MHz) equipped with tissue Doppler imaging (TDI) technology (Vingmed Ultrasound, GE, Horten, Norway). All echocardiographic measurements were performed in five consecutive cycles, and their average was used for the calculations. Two-dimensional and standard M-Mode measurements were performed according to the American Society of Echocardiography (ASE) recommendations [7]. The EF, end-diastolic volume, and end-systolic volume were analyzed by the Simpson method and Teichholz method.

For the calculation of aortic stiffness, the diameter of the ascending aorta was measured from the same view on the M-mode tracing at a level of 3 cm above the aortic valve. The systolic aortic diameter (AoS) was measured at the maximal anterior motion of the aorta, whereas the diastolic aortic diameter (AoD) was measured at the peak of the QRS complex on the simultaneously recorded ECG. Five consecutive measurements were performed, and their mean was calculated. At this time, brachial blood pressure was measured.

Assessment of Aortic Stiffness: Aortic elasticity was calculated according to the following three formulas:

“Aortic strain” (AS) = (AoS-AoD)/AoDx100,

“Aortic distensibility” (AD) = (2 x Aortic strain/100)/(SBP-DBP) (10^-3 cm^2 dyn^-1)

“Aortic stiffness index” (ASI) = ln(SBP/DBP)/(AoTIC strain/100)

AoD = aortic root end-diastolic diameter, AoS =aortic root end-systolic diameter

Statistical analysis were performed with SPSS 18.0 (PASW Statistics for Windows, Version 18.0. Chicago: SPSS Inc.) software.

Material and Method
Study Design and Patient Population: In this study, 58 hypertensive patients who were previously diagnosed with essential hypertension and followed with medical therapy and 60 controls without hypertension were included. Patients with known or suspected coronary artery disease (CAD), reduced ejection fraction (EF) (<50%), more than mild valvular stenosis/regurgitation, heart failure, cardiomyopathy, prostatic heart valve, secondary hypertension, renal failure, history of cerebrovascular accident, congenital or acquired aortic diseases, aortic aneurysm, history of cardiovascular or aortic surgery, connective tissue disorders, low-quality echocardiographic and ultrasonographic images, conduction abnormalities, and atrial fibrillation on the electrocardiogram (ECG) were excluded. BP measurements were performed a week apart, at sitting position and after the rest for 5-10 minutes. Patients with a blood pressure of <140/90 were considered normotensive. ABPM was applied to the hypertensive group. Hypertensive patients were taking angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARB), thiazide diuretics group, and calcium channel blockers as a monotherapy or combination therapy.
Results

We enrolled 118 participants, and 23 (%39,65) were in the dippers group, 28 (%48,27) in the non-dippers group, 7 (%12,01) in the revers-dippers group, and 60 in the control group. Mean age of the hypertensive patients was 47,6 ± 8,63 years and mean age of the control group was 48,5 ± 7,0 years. Mean age was 44,5 ± 9,7 years in dippers group, 50,1 ± 7,7 in the non-dippers group, 47,5 ± 5,7 in reverse dippers group. The majority of the participants were women (%69,49). In the dippers group there were 14 women and 9 men, in the non-dippers group there were 22 women and 6 men, in reverse dippers group there were 4 women and 3 men. The mean ambulatory systolic and diastolic blood pressure of hypertensive patients was 127,1 ± 14,3/71,3 ± 10,5 mmHg under drug treatment. It was 125,0 ± 11,3/71,3 ± 10,2 mmHg on dippers group, 126,3 ± 14,7/69,5 ± 9,5 mmHg on non dippers group, 134,0 ± 20,0/78,5 ± 13,7 on reverse dippers group. The mean clinical blood pressure of normotensive patients was 122,5 ± 17,2/78,8 ± 13,0 mmHg. Mean creatinine values of the control group were found to be lower than those of patient group although the patients who had impaired renal function tests were excluded, and there was no statistically significant difference between the groups in the subgroup analysis. The demographic and clinical characteristics of the patients are summarized in Table 1.

There was a significant difference between dippers group, non-dippers group, reverse group, and control group in terms of AS, AD, ASI and AD was lowest in reverse dippers group, but ASI was highest in reverse dippers group (Table 2). AS was significantly higher in control group compared to non-dippers, reverse dippers groups (p<0,01, p<0,01) respectively. There was no significant difference between the control and the dippers groups in terms of AS and ASI (p=0,87, p=0,23). AD was higher in control group than the dippers group, non dippers group, reverse dippers group (p<0,01, p<0,01, p<0,01) respectivly. AS and AD were significantly higher in dippers group compared to non-dippers and reverse dippers group (p<0,01, p<0,01, p<0,01, p<0,01) respectively. ASI was significantly lower in dippers group compared to non-dippers and reverse group (p<0,01, p<0,01) respectively. There was no significant difference between non-dippers and reverse dippers groups in terms of AS and ASI (p=0,56, p=0,54). The AD was significantly higher in the non-dippers group than the reverse dippers group (p<0,01) (Table 3).

Discussion

In our study, the aortic elasticity parameters AS and AD were significantly lower, and ASI was higher in the non-dippers group than dippers group. Also, ASI was higher and AD was lower in reverse diper group than other 3 groups: normal subjects, the dippers, and the non-dippers group.

There is a clear, albeit complex, relationship between great artery stiffness and atherosclerosis. Arterial stiffness and atherosclerosis usually co-exist, and some studies have described a correlation between atherosclerotic burden and aortic stiffness. In a series of clinical studies, increased arterial stiffness was shown in patients with CAD compared to the ones without CAD [8-11].

Arterial stiffness is a predictor of future cardiovascular and coronary events [12]. Arterial stiffness was shown to increase with age in a group of patients without cardiovascular risk factors [13]. After eliminating aging effects and other risk factors, increased arterial stiffness is an indicator of CAD, cerebrovascular and peripheral artery atherosclerosis [14,15]. Increasing arterial stiffness with advancing age, has been associated with a rise in SBP and pulse pressure (PP). An increase in SBP along with a decrease in DBP arising from the increase in PP—an indicator of the impaired elastic parameters of aorta—may lead to an elevation in left ventricle afterload and thereby impairing coronary perfusion [16,17]. Elastic parameters of aorta were shown to be a strong and independent risk factor for recurrent
Aortic stiffness and hypertension

Table 3. Comparison of aortic elasticity parameters between subgroups

<table>
<thead>
<tr>
<th></th>
<th>Co-Di</th>
<th>Co-NonDi</th>
<th>Co-RDi</th>
<th>Di-NonDi</th>
<th>Di-RDi</th>
<th>Non-Di-RDi</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASI</td>
<td>0.46</td>
<td>6.09</td>
<td>7.44</td>
<td>5.62</td>
<td>6.97</td>
<td>1.35</td>
</tr>
<tr>
<td>Mean difference</td>
<td>0.87</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>0.56</td>
</tr>
<tr>
<td>p</td>
<td>1.61</td>
<td>3.81</td>
<td>4.27</td>
<td>2.19</td>
<td>2.65</td>
<td>0.45</td>
</tr>
<tr>
<td>Mean difference</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>ASI</td>
<td>-1.53</td>
<td>-8.05</td>
<td>-9.92</td>
<td>-6.52</td>
<td>-8.38</td>
<td>-1.86</td>
</tr>
<tr>
<td>p</td>
<td>0.23</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>0.54</td>
</tr>
</tbody>
</table>

*C-Di: Control group and dippers group. Co-N-Di: Control group and non-dippers group. Co-R-Di: Control group and revers dippers group. Di-R-Di: Dippers group and Revers dippers group. Non-Di-R-Di: Non dippers and revers dippers group

<table>
<thead>
<tr>
<th></th>
<th>Co-Di</th>
<th>Co-NonDi</th>
<th>Co-RDi</th>
<th>Di-NonDi</th>
<th>Di-RDi</th>
<th>Non-Di-RDi</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASI</td>
<td>0.46</td>
<td>6.09</td>
<td>7.44</td>
<td>5.62</td>
<td>6.97</td>
<td>1.35</td>
</tr>
<tr>
<td>Mean difference</td>
<td>0.87</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>0.56</td>
</tr>
<tr>
<td>p</td>
<td>1.61</td>
<td>3.81</td>
<td>4.27</td>
<td>2.19</td>
<td>2.65</td>
<td>0.45</td>
</tr>
<tr>
<td>Mean difference</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>ASI</td>
<td>-1.53</td>
<td>-8.05</td>
<td>-9.92</td>
<td>-6.52</td>
<td>-8.38</td>
<td>-1.86</td>
</tr>
<tr>
<td>p</td>
<td>0.23</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>0.54</td>
</tr>
</tbody>
</table>

We detected a relationship between two independent determinants of cardiovascular and cerebrovascular events development; “aortic stiffness parameters” and “inadequate nocturnal blood pressure decrease”. According to this relationship, aortic stiffness was observed highest in reverse dippers group followed by non-dippers, dippers and control groups. Aortic stiffness may be one of the early stage findings of atherosclerosis. Mortality and morbidity may be reduced through detection and proper treatment of increased aortic stiffness in the early period in hypertensive patients.

Conflict of interest
None of the authors received any type of financial support that could be considered potential conflict of interest regarding the manuscript or its submission.

References
Aortic stiffness and hypertension:

How to cite this article: