Intra-Placental Twin Pair: Ultrasonographic Mirror-Image Artifact

Mekin Sezik
Süleyman Demirel University Faculty of Medicine, Department of Obstetrics and Gynecology, Isparta, Turkey

Presented as a video presentation at the 8th Obstetrics and Gynecologic Ultrasonography Congress, 26-30 September, 2012, Fethiye, Turkey

Özet
Yirmi sekiz yaşında 22 haftalık dikoryonik diamniyotik ikiz gebeliğin rutin antenatal ultrason muayenesinde, posterior plasenta içinde hareket eden bir “fantom fetus” gözle çarpıyor. Bu görünümün ayna artefakti olduğu ve amniyon keseleri arasında serbest hareket halindeki ikizler arasında yansı蜮an bir yüzeye oluşturduğu sonucuna varıldı. Obstetrisk sonografi esnasında bu şekilde fantom görüntülerin ortaya çıkabileceğini akılda tutulmalıdır.

Anahtar Kelimeler
Artefaktlar; Prenatal Ultrasonografi; İkiz Gebeliği

Abstract
During the routine antenatal ultrasound scan of a 28-year-old woman at 22 weeks’ gestation with a dichorionic diamniotic twin pregnancy, a “moving phantom fetus” was evident within the posterior placenta. It was concluded that the image was a mirror-image artifact with the freely floating inter-twin membrane between the amniotic sacs, comprising the reflective surface. The possibility of such phantom images during obstetric sonography should be considered.

Keywords
Artifacts; Prenatal Ultrasonography; Twin Pregnancy
Introduction

Various artifacts are encountered with a relatively common incidence during clinical ultrasound. The obstetric ultrasound is by far not free from these artifacts, as well. Although mirror-image artifacts are well-recognized and acknowledged in the medical ultrasound literature [1-3], such phantom images have rarely been defined during fetal ultrasound imaging [4]. In the current report, the findings of the mirror-image artifact of one of the fetuses in a dichorionic-diamniotic (DCDA) twin pregnancy were defined. The appearance of the “phantom fetus” within the posteriorly located placenta proved the artifactual nature of the image.

Case Report

A 28-year-old woman (gravida 1, para 0) presented for routine detailed ultrasound scan at 22 weeks’ gestation. Previous ultrasound examinations at 9 and 13 weeks were in line with a DCDA twin pregnancy. The anatomy scan at the first trimester (13 weeks) was normal, including nuchal translucency of both fetuses (1.6 and 1.9 mm, respectively).

During the current transabdominal scan at 22 weeks’ gestation, the placentae were fused and located posteriorly. The inter-twin membrane was observed to be freely floating between the two amniotic sacs, which had both normal amniotic fluid indices estimated by ultrasound. While, one of the fetuses was being scanned for anatomy, a “moving fetus” was evident within the posterior placenta. The fetal image within the placenta appeared and moved about synchronously with the snake-like floating motion of the inter-twin membrane, which was in the same transverse plane of the ultrasound transducer (Figure 1). Hyperechogenic spots on the membrane, emerging with its floating movements among the amniotic sacs, were also observed (Figure 2). This phantom appearance was consistent with an ultrasonographic mirror-image artifact.

Discussion

Medical ultrasonography utilizes high-frequency sound waves, which behave relatively similar to light rays. Therefore, physical rules pertaining to optics can be applied to ultrasonographic waves. One of the characteristics of light rays, and therefore ultrasound waves, is its reflective properties. Ultrasound images are formed by the reflecting beam, which is produced and subsequently detected by the transducer of the instrument. The time-lapse for the reflection of a specific beam enables the ultrasonic software to calculate and plot the image at the relevant depth on the image display.

As Sandler et al stated [5], “If sound waves are reflected by a highly reflective and extended (specular) curved surface, the sound signal is scattered and some would not directly return to the transducer”. This is called a multi-path reflection and forms the basis of an ultrasonographic mirror-image artifact.

The diaphragm-lung interface is a typical example for the curved surface. Hence, mirror images are rather common during abdominal, specifically hepatic, ultrasound imaging [6]. The liver parenchyma and gall bladder can be mirrored into the thorax mimicking a diaphragmatic hernia with liver present in the thorax [5]. Although such incidents can be encountered in infants and children, reports of phantom mirror images are scant during obstetric imaging of the fetus. Lim et al [4] described a transabdominal sonography showing an intraterine 12-week-pregnancy accompanied by two bilateral phantom “extrauterine pregnancies”. Transvaginal ultrasound showed a single active fetus, and the pregnancy subsequently progressed uneventfully to a normal singleton term delivery. The authors proposed that the psoas muscles posterior to the uterus during the transabdominal scan have acted as a mirror to the ultrasound.

In our case, the floating inter-twin membrane was probably the reflective surface. The “blinking” hyperechogenic spots on the membrane were secondary to ultrasound waves reflecting over the freely moving curved membrane. The distance travelled by the waves and leads the ultrasonographic software into error.
fact, as there was obviously lack of correlation with the known anatomy (i.e. the twin pair inside the placenta).

Dealing with artifactual mirror images may be bothersome, and elimination can be difficult. However, adjusting to a higher frequency or changing to a high-frequency probe may be useful. Furthermore, decreasing the energy output was supposed to eliminate the false images [5]. Transvaginal scanning can also be supplementary to decide whether the displayed image is true or phantom.

In conclusion, mirror-image artifacts might be encountered during fetal ultrasound examinations especially in the presence of a reflective structure such as the relatively thick inter-twin membrane in DCDA multiple pregnancies. One should bear in mind the possibility of such phantom images during obstetric scans.

References