Statin as an Anti-Inflammatory Agent in Sepsis

Statin ve Sepsis / Statin and Sepsis

Zekeriya Arslan1, Mustafa Aparcı1, Murat Ünlü2
1Etimesgut Military Hospital, Cardiology Department,
2Beytepe Military Hospital, Cardiology Department, Ankara, Türkiye

Özet

Anahtar Kelimeler
Statin; HMG-CoA Reductase Inhibitor; Sepsis; İnflammasyon

Abstract
Statins, inhibitors of HMG-CoA reductase, have been used for decrease morbidity and mortality not only in cardiovascular disease, but also in important infectious disease like pneumonia and sepsis recently through the anti-inflammatory pleiotropic effects. But it is still not clear that how statins accomplish these effects. They affect the complex inflammatory cascade mostly regarded as not related to lowering LDL cholesterol, but changing in NO balance, leucocyte-endothelium interactions, and inflammatory cell signaling or gene expression, affecting mononuclear-cell activity, coagulation, fibrinolysis and oxidative stress. Several promising publications demonstrated that statins could get in role in sepsis besides that we expected. In this review, we evaluate the mechanism of action of statins on inflammatory cascade of sepsis and their effects on clinical outcomes.

Keywords
Statin; HMG-CoA Reductase Inhibitor; Sepsis; Inflammation

DOI: 10.4328/JCAM.1535
Received: 12.01.2013 Accepted: 01.02.2013 Printed: 01.07.2014 J Clin Anal Med 2014;5(4): 347-52
Corresponding Author: Zekeriya Arslan, Etimesgut Asker Hastanesi, Kardiyoloji Servisi, 06790 Etimesgut, Ankara, Türkiye.
GSM: +905415669093 E-Mail: zekeriya.arslan@gmail.com
Introduction

There is an imbalance between extensive triggering of defense mechanisms and the effects of invaded microorganisms or their products in the systemic inflammatory response syndrome (SIRS), called sepsis. Complex pro- and anti-inflammatory events eventually result in widespread tissue injury [1]. The pathophysiological process starts from infection, and continues with sepsis, severe sepsis, and multi-organ dysfunction.

Sepsis is getting more important all over the world due to its high morbidity and mortality. 68% of the patients with severe sepsis requires intensive care unit (ICU) treatment and the mortality rate passes through the rate of 70% [2]. The increase of prevalence is probably the result of general population aging and improved survival with chronic diseases that predispose sepsis.

It is obvious that the need for new treatments and management strategies to be developed. Although a great amount of researches into the mechanisms of sepsis published recently, only few new antibiotics and some medications, like drotrecogin-alfa [3], were added to this era. Statins (HMG-CoA reductase inhibitors), may be useful for sepsis treatment with anti-inflammatory (pleiotropic) effects [4-8]. We evaluated the essential mechanisms of sepsis and potential role of statins on sepsis treatment.

Inflammatory Changes In Sepsis

A complex immunologic process helps for protecting from invasion of microorganisms in humans. A lack of defense may lead to develop infection. On the other hand, an excessive or poorly regulated response may be harmful to host by releasing of endogenous inflammatory compounds.

Microcirculation;

During sepsis, microcirculation is the place where the pathophysiological processes mostly occur in. Changes in arteriolar tone influencing blood pressure, adaptations to endothelial cell integrity causing leakage of proteins and macromolecules, adhesion and migration of leucocytes through the vascular endothelium, and also changes in coagulation system are the most common sequences of events in sepsis. Such processes contribute to widespread tissue damage, multiple organ failure and death. Meanwhile, endothelium serves as an important autocrine and paracrine organ regulating this condition.

Nitric oxide (NO);

Altered balance between inducible nitric oxide synthase (iNOS), providing inflammatory overproduction of NO, and endothelial nitric oxide synthase (eNOS), providing physiological production of NO, may be the most important responsible microvascular mechanism. With the activation of EC after developing sepsis, EC participates in the inflammatory process and generates multiple inflammatory mediators and up-regulating adhesion molecule expression. EC adhesion molecules activate the signaling cascades required for successful leucocyte transmigration. Normally, eNOS is activated by protein kinase Akt which produce NO for controlling vasomotor activity [9]. NO then diffuses into adjacent smooth muscle cells, activating guanyl cyclase and producing cyclic GMP that mediates vascular relaxation via protein kinase G. Sepsis results in a decrease in eNOS function and an increase in iNOS expression, leading to the vasodilation induced hypotension and resistance to vasopressor drugs in severe sepsis [5,10,11]. That also results in coagulopathy, endothelial dysfunction, vascular instability, and eventually apoptosis (ie programmed cell death) and multi-organ failure.

Cytokines;

Inflammation is mediated by a number of mediators including proinflammatory molecules, consist of cytokines (such as interleukin (IL)-1, IL-6, IL-8, tumor necrosis factor (TNF)-α), lysosomal enzymes, superoxide-derived free radicals, vasactive substances, such as platelet-activating factor (PAF), tissue factor (TF), and plasminogen activator inhibitor-1 (PAI-1); and anti-inflammatory cytokines such as IL-1Ra, IL-10 and transforming growth factor (TGF)-β [12] (Figure 1). Although cytokines are necessary for appropriate function of the system; over or inappropriate expression of them may result in severe tissue destruction. Microbial components reacting with specific toll receptors were reported to trigger monocytes, neutrophils, and endothelial cells (EC) to initiate an inflammatory cascade [13]. Such a trigger stimulates the TF and PAI-1 produced by EC, complements produced by monocytes, and also cytokines TNF-α and IL-1. Cytokines also stimulate oxygen radical production, lipid mediators and hence lead to vascular instability. Similar to cytokines, the inflammatory cells, including EC, also promote oxygen radical production; leading to microvascular occlusion with TF and PAI-1 [14]. Then, microvascular occlusion and vascular instability cause coagulopathy, fever, vasodilation and the capillary leak. Eventually multi-organ failure and sepsis will be developed.

Cytokines have the key role on early biochemical events in sepsis. It has been revealed that increasing of the TNF-α leads to sepsis and organ failure, and decreases the survival [15]. However, anti-TNF-α strategies with monoclonal antibodies were only slightly effective in increasing survival, not denoted dramatic clinical benefit as expected. Because, they neutralize already produced TNF-α, instead of suppressing ongoing production, and affect the intravascular space predominantly instead of extracellular space [16]. TFN-α and IL-1, promote endothelial cell-leucocyte adhesion, release of proteases and arachidonate metabolites, and activation of clotting by synergistic effects. IL-8 is a neutrophil chemotaxin and plays a role in driving sepsis. Additionally, a study of alefimomab targeting another pro-inflammatory cytokine, IL-3, revealed that its therapeutic potential on reduction in TNF-α production [17]. The anti-inflammatory cytokines, IL-1Ra and IL-10 inhibit the generation of TNF-α, T-lymphocyte and macrophage production, and augment the action of acute-phase reactants, like CRP, and immunoglobulins.

Pro/anti-inflammatory response rate may be another important point for this issue. It was demonstrated that impaired mediator production in response to trigger existed in mononuclear immune cells [18]. Thus this ratio, which is measured by TNF-α/IL-10, may be reduced and tends to the anti-inflammatory side, meaning the blunted inflammatory response [19].

Coagulation

Coagulopathy connected with sepsis results from increasing of TF and PAI-1, and decreasing protein C on mononuclear and endothelial cells (Figure1). In the coagulation cascade, TF activates factor X and then increases the conversion of prothrombin to thrombin, which generates fibrin from fibrinogen. On the other hand, increasing of PAI-1 levels results in decrease of plasminogen and plasmin which converts fibrin to fibrin degradation products (FDP). The activated form of protein C (aPC) inactivates factors Va and Vila, and inhibits PAI-1 activity. Eventually the formation of fibrin clots is enhanced in microcirculation, which leads impaired tissue perfusion.
Because of the complex nature of sepsis, only a single component blockage could not be sufficient to arrest this process. For example, although meta-analysis regarding to TNF-α inhibitors revealed improvement, these trials have disappointing [20]. Recombinant activated protein C (drotrecogin alfa, rhAPC), is also very expensive and can only be administered IV [3]. Therefore, strategies modifying several arms of the inflammatory cascade may be more successful and must be taken into consideration in sepsis treatment in the future.

Statin’s Mechanism Of Action In Sepsis

Lots of data proved in large trials about statins showed reduce morbidity and mortality and increase survival in patients with coronary artery diseases (CAD) [21,22]. Lowering LDL increases survival not only in individuals with elevated LDL levels, but also in those with average LDL levels in both primary and secondary prevention of CAD. The magnitude of effect of statins on cardiovascular outcomes have been greater than their attributable effect on lowering cholesterol [23]. Statins’ several anti-inflammatory and pleiotropic useful effects may beneficially modulate the inflammatory cascades and this make it possible to use in sepsis [24-26]. The mechanism is complex, but mostly regarded as not related to lowering LDL cholesterol. Changes in NO balance, leucocyte–endothelium interactions, inflammatory cell signaling and gene expression, effects on mononuclear-cell activity, coagulation and fibrinolysis, and antioxidant effects are some mechanism pathways which responsible for these effects as was demonstrated in figure 1 [27,28].

Impact of statins on cholesterol metabolism, cell signalling and gene expression

HMG CoA reductase, rate limiting enzyme of cholesterol syn-
of low-density lipoprotein (LDL)- receptors, responsible for LDL cholesterol uptake via receptor-mediated endocytosis, leading to total cholesterol, LDL-cholesterol and apolipoprotein B. Besides intracellular decreasing, statins reduce levels of isoprenoids, derived from mevalonate in the cholesterol synthesis cascade (Figure 2). Isopentenyl-PP, geranyl-PP and farnesyl-PP, are known as isoprenoids posttranslationally prenylate some adhesion molecules and cellular proteins that play pivotal roles in cell proliferation and signal transduction pathways. Guanine nucleotide binding proteins (G-proteins) have been shown to modulate signal transduction and mitogenic pathways [29]. Statins also decrease peroxisome proliferator-activated receptor (PPAR)-α activation [30], signal transducer activator of transcription-1 (STAT-1) and nuclear factor kappa beta (NFκβ) activity in human EC [31;32]; hence reduce iNOS expression. Jacobson et al. [33] also revealed that simvastatin decrease lipopolysaccharide-mediated gene expression and attenuate vascular leak.

Endothelial cell functions and NO balance

Although the entire mechanism remain unclear, the hypotheses of the benefit of statin therapy on endothelial functions center on NO-dependent. Briefly, statins transform the endothelium from predominantly pro thrombotic and vasoconstrictive to thromboresistant and vasodilatory stage. They reduce iNOS expression by blocking the transcription factors NFκβ and STAT-1, which attenuate the effects of cytokines upon EC [34]. Thus they prevents up-regulation of cell adhesion molecules on both endothelial cells and leucocytes. Enhancing physiological NO production appears to be most important mechanism that regulates the paracrine functions of the EC, including leucocyte and platelet adhesion and chemotaxis, control of vasomotor tone. Statins have been reported to increase eNOS activity by following mechanisms; inducing Akt-mediated phosphorylation of eNOS [35]; up-regulating eNOS expression [36]; inhibition of Rho, which is an eNOS inhibitor, via blocking of the mevalonate pathway [37]; and inhibition of caveolin-1, which down-regulates NO synthesis through sequestering eNOS into caveolae. Some evidences suggested that increased concentrations of oxidized LDL may directly inhibit NO by excessive production of oxygen-derived free radicals and reduced transcription or increased posttranslational destabilization of eNOS mRNA [38]. Hypercholesterolemia also reduces eNOS activity through cytokine production [39], or increases in dimethyl arginine, an endogenous inhibitor of eNOS [40]. The other effect of statin is to increase the number and survival of circulating endothelial progenitor cells (EPCs) and to induce angiogenesis by promoting the proliferation and migration [41].

Inflammatory cytokines, acute phase proteins and leucocyte adhesion

Investigators revealed that statins influenced the following cytokines or acute phase reactants; IL-1, IL-6, TNF-α [42,43], IL-8 [30-42], monocyte chemotactrant protein-1 (MCP-1) [30;42-44], and C-reactive protein (CRP) [30;32;45,46]. Statins can reduce the proinflammatory cytokines and acute phase reactants, contributing to attenuating of sepsis. Known as an acute phase reactant, CRP is mainly produced by hepatocytes in response to cytokines, majority of IL-6 and partly IL-8, IL-10, and IL-1Ra [47]. Among statins, especially atorvastatin reduces the CRP levels more than that of the others [48]. The TF inducers, CRP and MCP-1, were significantly reduced by simvastatin in another double-blind, placebo controlled study [49]. Statins also significantly decrease sepsis induced leucocyte recruitment, adhesion and transmigration. These effects were attributed to decrease MCP-1, IL-8, exotoxin induced leucocyte rolling, up-regulation of toll-like receptors (TLR) 4 and 2 on the surface of monocytes [50], an adhesion molecule E-selectin expression on the EC [51], and direct inhibition of CD11a/CD18 or lymphocyte function antigen-1 (LFA-1)-mediated leucocyte adhesion [52,53]. Suppressed TLR4 and TLR2 expression was associated with decreased circulating concentrations of TNF-α and MCP-1[50]. The direct inhibition of MHC class II antigens on T-cells is also probable. These pathways may have impact for beneficial effects expected on various side of mechanism of sepsis.

Coagulation and fibrinolysis

Besides enhanced platelet activation and hypercoagulability which is associated with hypercholesterolemia, studies mentioned about procoagulant condition in sepsis, contributing impaired microcirculation [54]. Statins decrease TF expression [49], von Willebrand factor[51], and PAI-1 [51]; and increase tissue plasminogen activator (tPA) [55] and thrombomodulin activities [56]. In addition to reduced conversion of prothrombin to thrombin and reduced thrombin activity, the level of fibrinogen also reduces in result of decreased TF expression. On the other hand, statins also seem to stimulate fibrinolysis, which is impaired in sepsis by decreasing the level and activity of PAI-1 and increasing PA [51,54]. Though the effect of statins on plate-
Antioxidant effects and cellular apoptosis
Some of the putative antioxidant effects have been attributed to statins because of decreasing isoprenylation of NADPH oxidase, in which its isoprenylated state generates superoxide anion [60-62]. Statins increase EC superoxide dismutase (SOD) and haemoxgenase-1 [63,64].

TNF-α, IL-1 and TGF-β may increase the EC apoptosis. However, it is not easy to determine the apoptotic EC with routine methods. Soluble Fas levels increase in patients with sepsis and refall during recovery [65], and nuclear matrix protein level, which is cell death index, is also high in sepsis. These findings make us to think that EC apoptosis is increased in sepsis related multi-organ disease. Statins activate the Akt pathway which is important for reducing EC apoptosis in vitro [66].

Evidences For Statin Use In Sepsis
Although several observational studies reported the statins as protective for sepsis by their pleiotropic effects, the metaanalysis couldn’t show the explicit benefit [67]. However, evidence based data derived from those studies revealed that statin use has some beneficial effects on preventing from infectious diseases or sepsis and improving outcomes.

Preventing from sepsis
A great amount of epidemiologic studies demonstrated that the patients hospitalized with bacteremia and pneumonia receiving statins had decreased incidence of sepsis. Evidences suggested that statin therapy reduces six times the incidence in severe sepsis[5], three times developing pneumonia in diabetic patients [68], 2.5 times hospital admission for sepsis in patients with chronic renal failure [69], reduces 7.9 times the developing severe sepsis due to acute bacterial infection[6], reduce 19-25% incidence of sepsis in patients with cardiovascular disease [70]. A recent study also showed that acute aortavastatin administration may prevent sepsis progression in patient with sepsis[71]. However mortality rate didn’t reduce by statin using in this study.

Although statins seem to play role on preventing from sepsis, some hazardous effects also were reported. Evidences revealed that low lipoprotein and cholesterol levels may predispose to infection and related mortality [5,72,73]. So it is clear that the need for randomized studies to clarify the net benefit of statins on treatment of sepsis.

Reducing mortality and improving outcomes
Statin use was demonstrated to reduce mortality in patients with bacteremia[4]. They also reduce mortality 4.5 times in septic patients with atherosclerosis [74], 2 times in patients with pneumonia [75]. 2.5 times suspected infection related mortality in the emergency department [76]. In contrast, some other studies reported no improve on clinical outcomes with statins, and are not associated with reduced mortality or need for admission to an ICU in patients with pneumonia; and reports of benefit in sepsis attributed to confounding variables [77-78]. Additionally, even if they are not frequent, statins are associated with serious organ specific adverse effects, such as muscular system and hepatic toxicity. These harmful effects cannot be ignored. However, we have to remember that how important a catastrophic disease the sepsis is, while making a decision.

In conclusion, the positive evidences derived from these retrospective investigations and observational studies arousing expectation, but couldn’t be confirmed by randomized controlled trials to prove the net benefit of statins on sepsis treatment; additionally not all clinical studies showed a positive outcome so far. So it is obvious that randomised controlled large clinical studies are still required for confidently use statins for treatment of sepsis.

Competing interests
The authors declare that they have no competing interests.

References

