An Unusual Case of a Giant Left Ventricular Pseudoaneurysm

Nadir Bir Dev Sol Ventrikül Yalancı Anevrizma Olgusu

Dev Sol Ventrikül Yalancı Anevrizması / Giant Left Ventricular Pseudoaneurysm

Özgül Uçar Elalmış1, İlker Şahin2, Selçuk Kanat1, Havva Tuğba Gürsoy1, Ahmet Karagöz3

1Ankara Numune Education and Research Hospital, Department of Cardiology, Ankara, 2Çankırı State Hospital, Cardiology Clinic, Çankırı, 3Giresun Prof. Dr. A. Ilhan Özdemir State Hospital, Cardiology Clinic, Giresun, Turkey

Özet

Anahtar Kelimeler
Sol Ventricle; Pseudoaneurysm; Myocardial Infarction; Heart Failure; Echocardiography

Abstract
Left ventricular pseudoaneurysm is one of the late mechanical complications of myocardial infarction, which also can be associated with cardiothoracic surgery, trauma, and, rarely, infective endocarditis. A giant pseudoaneurysm is a rare presentation. We report a patient with a giant left ventricular pseudoaneurysm probably following a silent myocardial infarction, who presented with congestive heart failure symptoms. Unfortunately, cardiac rupture and tamponade developed during diagnostic studies. The patient had surgical repair of the aneurysm and the mitral valve, but could not recover fully after surgery. We suggest urgent surgery whenever a giant left ventricular pseudoaneurysm is diagnosed.

Keywords
Left Ventricle; Pseudoaneurysm; Myocardial Infarction; Heart Failure; Echocardiography

DOI: 10.4328/JCAM.1999

64 | Journal of Clinical and Analytical Medicine
Introduction

Left ventricle (LV) pseudoaneurysm is a late mechanical complication of myocardial infarction (MI), which can develop within a few days or even much later (2 years). It can also be associated with cardiothoracic surgery, trauma, and, rarely, infective endocarditis [1]. A giant LV pseudoaneurysm is a rare presentation. We report a patient with a giant LV pseudoaneurysm probably following a silent myocardial infarction, who presented with congestive heart failure symptoms. The patient had surgical repair of the aneurysm and the mitral valve.

Case Report

A 57-year-old man presented to emergency department with dyspnea and congestive heart failure symptoms. He had no hypertension, hyperlipidemia or diabetes mellitus. He was not aware of any cardiovascular disease. He had no history of chest trauma. On electrocardiogram, the rhythm was sinus and there were Q waves and T negativity in lateral derivations [Figure 1].

Cardiothoracic ratio was increased on chest X-ray. His vitals were stable. On physical examination, a pansystolic murmur could be heard at the cardiac apex and there were fine rales in pulmonary auscultation. The admission blood tests were as follows: Blood fasting glucose: 134 mg/dl (70-109), blood urea: 55 mg/dl (10-50), creatinin 1.24 mg/dl (0.7-1.2), total cholesterol:136 mg/dl (N<200), LDL-C: 76 mg/dl (<100), HDL: 51 mg/dl (35-55), CK-MB: 30 U/L (7-25), ALT: 11 U/L (<50), LDH: 499 U/L (240-480), hemoglobin A1c: 6.7 % (4-6) and troponin I: 0.186 ng/ml (N: 0-0.15). CK-MB or troponin I levels showed no elevation during follow-up. Transthoracic echocardiogram showed a giant pseudoaneurysm involving the posterior, inferior, lateral and apical walls of the left ventricle with depressed systolic functions (Left ventricular ejection fraction 35%) [Figure 2]. There was severe mitral regurgitation. The diameter of aorta, which can be suggestive about a long previous history of cardiovascular disease, was within normal limits. A layer of organized thrombus lined the aneurysm sac. Antiaggregant, anti-thrombotic therapy with beta-blocker and angiotensin-convert ing-enzyme inhibitor were started. Multidetector computerized tomography (MDCT) confirmed a pseudoaneurysm with the size of 90*68*96 mm, communicating with the left ventricular cavity [Figure 3]. Coronary angiography revealed a muscular bridge on the left anterior descending artery (LAD) and total stenosis of the circumflex artery after the first obtus marginal branch. On the third day of hospitalization, the patient became hypotensive and emergent echocardiography revealed echodense pericardial effusion surrounding the heart chambers. Intraaortic balloon counterpulsation was inserted and pericardiocentesis was performed. The patient underwent emergent cardiac surgery. The aneurysmal sac was repaired by plication and mitral valve repair by a ring annuloplasty. The patient weaned-off from the bypass pump gradually, but he stayed unconscious and maintained on mechanical ventilation. A cranial computerized tomography showed multiple ischemic areas. After three months he is still followed in the reanimation clinic with tracheostomy and support therapy.

Discussion

We presented a case of giant pseudoaneurysm probably after silent myocardial infarction. He was admitted with symptoms of heart failure and the pseudoaneurysm was diagnosed during routine echocardiography. LV pseudoaneurysms form when cardiac rupture is contained by adherent pericardium or scar tissue. The main causes of pseudoaneurysm formation are as follows: LV free wall rupture in the course of myocardial infarction (55%), after cardiac surgery (33%), chest trauma (7%), infective...
and cardiac MRI can provide a full depiction of the left ventricle. The size of cardiac death was 88.9% at both 1 and 4 years in 10 patients with chronic pseudoaneurysm, 16 were alive at a median time of 2 to 3 months after a myocardial infarction [2].

Because of its rarity, the natural course of a left ventricular pseudoaneurysm is not well established. In pseudoaneurysms related with acute myocardial infarction, timing of the surgery depends on the age of the myocardial infarction. Surgery is urgently recommended in acute pseudoaneurysms, which are discovered within 2 to 3 months after a myocardial infarction, because the onset of rupture is unpredictable [7]. In patients with acute myocardial infarction, surgery is associated with a 23-35.7% mortality rate, but the risk of rupture is 50% [1,7]. Early postoperative mortality is associated with poor LV functions rather than surgical techniques. However, when the diagnosis is made years after the myocardial infarction, the urgency or need of the operation is determined by symptoms rather than risk of rupture. In a review by Frances and colleagues, of 31 patients with chronic pseudoaneurysm, 16 were alive at a median time of 156 weeks [1]. In another study, the probability of being free of cardiac death was 88.9% at both 1 and 4 years in 10 patients with postinfarction left ventricular pseudoaneurysm [8]. Symptomatic patients or those with a large (>3 cm) or gradually enlarging pseudoaneurysm should be treated surgically [8]. MDCT and cardiac MRI can provide a full depiction of the left ventricle and the adjoining pseudoaneurysm, enhancing the preoperative evaluation of the lesion. Regular echocardiographic evaluations should be performed to detect any increase in size for small and asymptomatic pseudoaneurysms.

Competing interests

The authors declare that they have no competing interests.

References

How to cite this article: Elalmış ÖU, Şahin İ, Kanat S, Gürsoy HT, Karagöz A. An Unusual Case of a Giant Left Ventricular Pseudoaneurysm. J Clin Anal Med 2013;4(suppl 1): 64-6.