Aim: Hallux valgus is a complex foot deformity resulting from medial deviation of first metatarsal and lateral deviation of toe. Radiographic and functional outcomes of chevron type distal metatarsal osteotomy applied to symptomatic hallux valgus patients with moderate deformity were assessed in the present study. Chevron osteotomy was applied to 27 feet (13 left, 14 right) of 22 patients (12 women and 10 men; mean age: 45±16.7 years). Mean follow-up was 15.4± 4.71 months (range, 10–24). Method: The average preoperative AOFAS score of 39.1 ± 8.55 (range, 32–57) improved (p < 0.0001) to 87.8 ± 4.7 (range, 82–97). The average preoperative hallux valgus angle (HVA) of 37.4 ± 5.8 (range, 29–50) improved (p < 0.0001) to 14.8 ± 3.1 (range, 10–20), and the average preoperative intermetatarsal angle (IMA) 13.1 ± 1.5 (range, 11–17) improved (p < 0.0001) to 7.1 ± 1.4 (range, 5–9). The average sesamoid position improved from 2.9 ± 0.2 (range, 2-3) preoperatively to 1.2 ± 0.4 (range, 1-2) (p < 0.0001). Results: The results of the study that chevron osteotomy yields good radiological result, high degree of postoperative patient satisfaction with minimal complications. Chevron osteotomy is most effective method in the treatment of moderate hallux valgus.

Keywords
Hallux Valgus; Chevron Osteotomy; Surgery
Introduction

Hallux valgus is a common disorder of the forefoot characterized by lateral deviation of the great toe and medial deviation of first metatarsal [1, 2]. Extrinsic and intrinsic factors are thought to play role in its etiology [1, 2]. Current classification is based on radiographic measurements and classify the disease as mild, moderate, and severe [1-3]. Mild hallux valgus deformity is characterized by a hallux valgus angle (HVA) of less than 20 degrees and intermetatarsal 1-2 angle (IMA) of 11 degrees or less. A moderate deformity is characterized by a hallux valgus angle of 20 to 40 degrees and a first intermetatarsal angle of less than 16 degrees, while a severe deformity is characterized by a hallux valgus angle of more than 40 degrees and a first intermetatarsal angle of 16 degrees or more [2, 4].

Many procedures for correcting hallux valgus have been described [3, 5, 6]. Considerations for technical choice include the hallux valgus angle, intermetatarsal angle, arthritis in the first metatarsophalangeal (MTP) joint, hypermobility of the first tarsometatarsal joint, position of sesamoids, musculo-tendinous balance, and congruity of the first metatarsophalangeal joint [1-3]. Surgical techniques are generally classified as soft tissue procedures, metatarsal and phalangeal osteotomies, and combinations thereof [4, 7]. In general, distal metatarsal osteotomies are recommended to achieve sufficient correction of deformity in patients who has hallux valgus angulation up to 30-40° and intermetatarsal angulation up to 15° but no marked arthrosis in first MTP joint [6, 8]. Advantages of Chevron osteotomy include enabling early mobilization by providing a stable osteosynthesis, minimal shortening and ease of technique [9].

Radiographic and functional outcomes of chevron type distal metatarsal osteotomy applied to symptomatic hallux valgus patients with moderate deformity and nor arthritic changes in MTP joint were assessed in the present study.

Material and Method

Chevron osteotomy as surgical treatment was performed to 27 feet (13 left, 14 right feet) of 22 patients (12 women and 10 men; mean age: 45.0±16.7 years; range: 22-69 years) with a diagnosis of moderate symptomatic hallux valgus. There was bilateral involvement in five patients. Minimum follow-up was 10 months (mean: 15.4±4.71 months, range: 10-24 months) (Table 1). The main operative indication for the surgery was pain and deformity in the forefoot.

In preoperative and postoperative assessment, hallux valgus and deformity in the forefoot. Pain and deformity in the forefoot.

<table>
<thead>
<tr>
<th>Number of patients (feet)</th>
<th>22 (27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean ± SD (range)</td>
<td>45 ± 16.7 (22-69)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>12 (54.5%)</td>
</tr>
<tr>
<td>Male</td>
<td>10 (45.5%)</td>
</tr>
<tr>
<td>Follow-up, months, mean ± SD (range)</td>
<td>15.4 ± 4.71 (10-24)</td>
</tr>
<tr>
<td>Location, n (%)</td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>14 (51.9%)</td>
</tr>
<tr>
<td>Left</td>
<td>13 (48.1%)</td>
</tr>
</tbody>
</table>

In addition to hallux valgus deformity, it was found that there was hammer toe deformity in second finger in two feet and Freiberg disease in second metatarsal in two feet. Proximal phalanx head resection, extensor digitorum brevis tenotomy and lengthening of extensor digitorum longus were performed for hammer toe deformity. Cheilectomy of metatarsal head and synovectomy was performed for Freiberg disease.

After surgery, short leg cast was applied to patients and no weight-bearing was allowed until end of second week. Then, full weight-bearing as tolerated was allowed by removing casts. All statistical analyses were performed using SPSS version 16.0.

Surgical technique

All osteotomies were performed by one surgeon (DF). The technique was done through an approximately 5 cm longitudinal incision over the first MTP joint. An inverted Y-shaped capsulotomy was performed, the medial eminence was excised, and a 60° V-shaped osteotomy was then made (Figure 1). The thickness of osteotomy blade used was 0.6 mm. The capital fragment was then manually translated laterally and not exceeding 50% of the width of the metatarsal head. Then compressed and stabilized with a two cannulated screw. On indication, a distal soft tissue procedure was performed by a 1-cm longitudinal incision over the dorsal aspect of the first intermetatarsal space to expose the conjoined adductor tendon. The tendon was dissected from the lateral sesamoid and the base of the proximal phalanx. A partial capsulotomy was performed to the lateral aspect of the first metatarsophalangeal joint.

In addition to hallux valgus deformity, it was found that there was hammer toe deformity in second finger in two feet and Freiberg disease in second metatarsal in two feet. Proximal phalanx head resection, extensor digitorum brevis tenotomy and lengthening of extensor digitorum longus were performed for hammer toe deformity. Cheilectomy of metatarsal head and synovectomy was performed for Freiberg disease.

After surgery, short leg cast was applied to patients and no weight-bearing was allowed until end of second week. Then, full weight-bearing as tolerated was allowed by removing casts. All statistical analyses were performed using SPSS version 16.0.
(SPSS Inc., Chicago, USA) for Windows (Microsoft Corporation, Redmond, USA). Paired Student’s t-tests was used to analyze data. P < 0.05 was considered to be statistically significant.

Results
The average preoperative AOFAS score of 39.1 ± 8.55 (range, 32–57) improved to 87.8 ± 4.7 (range, 82–97) (p < 0.0001) (Table 2). The average preoperative HVA of 37.4 ± 5.8 (range, 29–50) improved to 14.8 ± 3.1 (range, 10–20) (p < 0.0001), and the average preoperative IMA of 13.1 ± 1.5 (range, 11–17) improved (p < 0.0001) to 7.1 ± 1.4 (range, 5–9) (Figure 2). The average sesamoid position improved from 2.9 ± 0.2 (range, 2-3) preoperatively to 1.2 ± 0.4 (range, 1-2) (p < 0.0001).

Table 2. Comparison of preoperative and postoperative radiographic results.

<table>
<thead>
<tr>
<th></th>
<th>Pre-operative</th>
<th>Post-operative</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOFAS score</td>
<td>39.1 ± 8.55</td>
<td>87.8 ± 4.7</td>
<td>0.0001</td>
</tr>
<tr>
<td>HVA</td>
<td>37.4 ± 5.8</td>
<td>14.8 ± 3.1</td>
<td>0.0001</td>
</tr>
<tr>
<td>IMA</td>
<td>13.1 ± 1.5</td>
<td>7.1 ± 1.4</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

AOFAS, American Orthopaedic Foot and Ankle Society; HVA, hallux valgus angle; IMA, intermetatarsal angle

Discussion
Many surgical techniques have been defined for correction of hallux valgus deformity. However, there is no surgical technique that has ability to correct all constituents of deformity [3, 6, 12]. The goal of surgical intervention is provision of normal anatomy as well as normal functions. Thus, one should select most appropriate surgical intervention with lowest complication and recurrence rate by taking foot deformity, severity of deformity and patient factors [1-4, 8]. Hallux valgus deformity is classified as mild, moderate and severe based on HVA and IMA [1-3]. In our patients, mean preoperative IMA value was 13.1° (range, 11-17), whereas mean preoperative HVA was 37.4° (range: 29-50). We think that Chevron osteotomy is sufficient in our patients with moderate deformity. The results of this study that Chevron osteotomy yields good radiological result, high degree of postoperative patient satisfaction with minimal complication. The distal metatarsal osteotomy is a widely accepted method for the correction of mild to moderate hallux valgus [8, 13]. Chevron and Mitchell distal metatarsal osteotomies are frequently used in the treatment of mild to moderate hallux valgus [8, 13]. According to Heerspink et al. [13] the Mitchell osteotomy leads to further shortening of the first metatarsal compared to Chevron osteotomy. This might lead to transfer metatarsalgia. Mitchell osteotomy provides better adjustment in the terms of the HV correction radiologically. It is essential for the prevention of postoperative metatarsalgia for a successful HV surgery. Therefore, Chevron osteotomy may be preferred instead of Mitchell osteotomy especially in patients with a short first metatarsus [13].

Distal Chevron osteotomy is one of the most commonly employed osteotomies [8, 13]. Advantages of this procedure are stability of the osteotomy, rapid healing and minimal shortening. Possible disadvantages are avascular necrosis, insufficient correction or recurrence of hallux valgus [5, 8, 12, 13]. Avascular necrosis of the metatarsal head in Chevron osteotomies occurs 0-20% [3]. Excessive capsular dissection may lead to avascular necrosis of part or all of the metatarsal head since, after osteotomy, the only remaining blood supply is from the capsule [5, 8, 12]. We took care to preserve the lateral capsule and saw no signs of avascular necrosis. Only one patient developed postoperative sensory loss over the medial aspect of the great toe. It has been reported that limitations in movements were developed in first MTP joints in cases in which distal osteotomy with soft tissue releasing were performed [3, 12]. No limitation in first MTP joint was detected in our patients at the end of follow-up.

Clinical complaints as well as radiographic measures should be taken into account while making decision of surgical indication [4]. In all patients, the complaints included pain and difficulty in wearing shoes. However, cosmetic disorder due to deformity was also striking. At the end of follow-up, patient satisfaction was found to be excellent in 16 feet (59.2%) and good in 11 feet (40.8%).

Figure 2. Preoperative and postoperative radiographs of the patient who underwent Chevron osteotomy for hallux valgus deformity.

Toe hypoesthesia was developed in one patient as a complication. No patients had postoperative hallux varus deformity, osteotomy nonunion, AVN of the head of first metatarsal, dorsal malunion of the distal metatarsal osteotomy, or recurrence of the deformity after surgery. At the end of follow-up, patient satisfaction was found to be excellent in 16 feet (59.2%) and good in 11 feet (40.8%).
compiling patients younger and older than 50 years at time of surgery, Schneider et al. [8] found no differences in the clinical and radiographic outcome; thus, they concluded that chevron osteotomy need not be restricted to younger patients. Several fixation methods are used for stabilization of distal chevron osteotomy including Kirschner wires (K-wire), mini screws, staples and bioabsorbable screws, plates [5-8, 17-20]. Each form has unique advantages and disadvantages [18, 19]. K-wires are relatively easy to insert and require limited exposure for insertion. However, they may loosen and migrate, irritate soft tissue, and provide a portal for infection if they penetrate the skin [17, 19]. To avoid the sequelae associated with metallic fixation, such as painful tissue irritation, loosening of hardware, secondary removal procedure, or pin tract infection, bioabsorbable fixation has been utilized [18]. Using plates in metacarpal and phalangeal fractures provides the most rigid, secure, and reliable fixation of implants currently available. The primary advantage is rigid fixation [21]. Potential disadvantages of using plates are foreign body reaction, allergic reaction, capsule irritation, palpable or visible fixation [19]. We used two cannulated screws for stabilization of osteotomy in our patients. The advantage of chevron osteotomy is direct weight-bearing postoperatively owing to the stable fixation. The patients were allowed for partial weight-bearing within first two months after surgery, followed by full weight-bearing. No loss of fixation, nonunion or malunion deformity was developed. Hallux valgus is a complex deformity of the foot includes various accompanying pathologies [1, 4]. In addition to hallux valgus deformity, it was found that there was hammer toe deformity in second finger in two feet and Freiberg disease in second metatarsophalangeal joint in two feet. Proximal phalanx head resection, extensor digitorum brevis tenotomy and lengthening of extensor digitorum longus were performed for hammer toe deformity. Chellectomy of metatarsal head and synovectomy was performed for Freiberg disease.

Secondary transfer metatarsalgia accounts for a significant proportion of failure after HV correction. The reported incidence of transfer metatarsalgia after chevron osteotomy has been 0% to 5% [12, 13]. Potential shortening of the first metatarsal can lead to transfer metatarsalgia of the head of the second metatarsal by the changed pressure distribution of the forefoot [12, 13]. In Chevron osteotomy, metatarsal shortening is generally associated to thickness of osteotomy blade used. The thickness of osteotomy blade used was 0.6 mm in this study. No transfer metatarsalgia was developed in our patients after surgery. The present study has some limitations, including the lack of a control group for comparison and lower case numbers.

In conclusion, chevron osteotomy provides correction of deformity in patients with moderate hallux valgus deformity in complete and stable manner. It is an appropriate choice in hallux valgus surgery due to its technical ease, satisfactory functional outcomes and good patient satisfaction.

Competing interests

The authors declare that they have no competing interests.

References