Minimally Invasive Surgery for Pectus Excavatum: Park Technique

Hyung Joo Park
Department of Thoracic and Cardiovascular Surgery, Korea University Medical Center, Korea.

Abstract
Pectus excavatum (PE) is the most commonly encountered chest wall deformity which comprises one out of 1,000 live births. Depression of the anterior chest wall due to posterior angulation of the sternum and costal cartilages results in compression of internal thoracic organs as well as aesthetically unpleasant appearance. Multiple surgical techniques have been developed to correct this condition. Ravitch procedure, the technique including the excision of all deformed costal cartilages, division of intercostals bundles from the sternum, and transverse sternal osteotomy, was proposed in 1949 and most widely applied until recently. The Wada technique, principally sternal turnover, has been an alternative procedure. Those invasive techniques involve tedious and bloody operations resulted in a permanent defect of costal cartilages or contracture of the chest wall. Most importantly, a large, unsightly operative scar at the anterior chest is aesthetically dissatisfying. In this study “Minimally Invasive Surgery for Pectus Excavatum: Park Technique” was explained.

Keyworld
Pectus Excavatum; Minimally Invasive Surgery; Park Technique

Özet
Introduction

Pectus excavatum (PE) is the most commonly encountered chest wall deformity which comprises one out of 1,000 live births. Depression of the anterior chest wall due to posterior angulation of the sternum and costal cartilages results in compression of internal thoracic organs as well as aesthetically unpleasant appearance.

History of Surgical Correction of PE

Multiple surgical techniques have been developed to correct this condition. Ravitch procedure, the technique including the excision of all deformed costal cartilages, division of intercostals bundles from the sternum, and transverse sternal osteotomy, was proposed in 1949 and most widely applied until recently. The Wada technique, principally sternal turnover, has been an alternative procedure. Those invasive techniques involve tedious and bloody operations resulted in a permanent defect of costal cartilages or contracture of the chest wall. Most importantly, a large, unsightly operative scar at the anterior chest is aesthetically dissatisfying.

New Minimally Invasive Technique

In 1998, Donald Nuss first reported a minimally invasive repair technique revolutionizing pectus repair. The procedure requires only two small incisions made on the lateral aspect of the chest, through which a curved metal bar is inserted retrosternally and then flipped to correct the chest wall depression. This new method has just opened a new era of pectus excavatum repair by providing a much less bloody and cosmetically superior option to patients and surgeons alike (Figure 1).

The Learning Curve

The author started the minimally invasive pectus repair in 1999, only two years after Nuss. Throughout the world, mainly in the USA as well as in Korea, the learning curve for this new technique has been quite steep. A delightful success for the first few cases of the original Nuss procedure was gloomed by a series of disappointing failures soon after that. Complications of the procedure, such as internal organ injury, bar rotation and others still plagued surgeons adopting this new strategy. Main reasons for this failure have proven to be that the archetypal Nuss technique has limitations in patients with asymmetric morphology and older patients with stronger heavier thoraces as well as defective bar fixation. Surprisingly, as much as 42% of pectus excavatum patients exhibit an asymmetric or complex (depressions and elevations) type of chest wall morphology. Nevertheless, the original technique proposed by Dr. Nuss is merely a blind approach by always applying symmetrically shaped bars to all types of pectus excavatum regardless of its morphologic characteristics. Consequently, outcomes failed to achieve symmetric correction. Surprisingly this blind approach is still prevailing in the USA and other countries.

Emerging of Park Technique

In initial experiences worldwide, especially in the USA, high complication rates such as pneumothorax, bar dislocation and consequent reoperation, were highly criticized. In addition, adults’ heavy chests could not be effectively managed with this technique. Therefore, severe asymmetry and adults were considered no good candidate or even contraindicated for this procedure. Accordingly, my journey on the pectus surgery pursued through a trailblazing path to overcome the problems raised from this raw Nuss technique. This process began with a meticulous assessment of individual chest wall topography and ended up creating a morphological classification. Based on the precise morphological analysis, targets that needed correction were identified. Then these targets were incorporated into the hinge point selection and bar bending process where I created an asymmetric or complex shaped bar (seagull, compound, etc.) matching the patient’s contour. This has been the first and most important step in acquiring post-repair symmetry.

Another big issue in early experiences worldwide was bar dislocation. Because of the enormous pressure exerted on the bar after its insertion, bar dislocation is a menacing problem that results in defective correction or total failure of the procedure. Fixation of the bar to adjacent subcutaneous tissue, as proposed in Nuss technique, simply does not suffice except in highly selected pediatric patients with less severe and symmet-
ric morphology.

As a first generation of this new procedure, the author’s initial experience was a dreadful battle with various asymmetries and heavy adult patients. However, with aforementioned morphology-oriented repair principle and additional troubleshooting techniques, ultimately a variety of complex morphology could be repaired successfully.

Theories of Park Technique (MM-MT-TERCOM)

1. Morphological Classification

<table>
<thead>
<tr>
<th>Symmetric</th>
<th>Asymmetric</th>
<th>Unbalanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>C = P</td>
<td>C ≠ P</td>
<td>a > b</td>
</tr>
</tbody>
</table>

2. Multiple Momentum Theory (MM Theory)

Many times a complex morphology encompassing “excavatum-carinatum combination, Type 2C” is met in repair. In these cases, single momentum approach that is focusing only on elevating the depressed portion cannot avoid further elevation of the protruded portion. To solve this problem, discovering a role of negative momentum in the lever action of the pectus bar, which compresses the hinge point, can be the sole solution for minimizing the protrusion and achieving an eventual symmetric correction.

3. Multiple Target Approach (MT Approach)

As mentioned above in MM Theory, in repair of chest wall deformities, it is common that the target to be corrected is not a single depression, but various combinations of multiple depressions and/or protrusions of the chest wall. Having an eye for recognition of each and every factor of the deformity is the first step to a solid repair strategy.

4. Terrain Contour Matching System (TERCOM)

Once the multiple targets are set, all these targets must be reflected in the pectus bar shaping to correct every element of the deformity. I have come up with the easiest way to do it: the “Terrain Contour Matching” which is a fitting of the bar to the chest wall undulations, which makes the bar of exact mirror image. Terrain Contour Matching (TERCOM) on the eccentric-unbalanced type of asymmetry. A. Topography (depressions or protrusions) of the chest wall is precisely reflected on the bar in the process of bar shaping. The apex of the bar (A) corresponds to the point of depression (D), and a notch (N) is created in the bar at the point of protrusion (P) between both hinge points (H). B. Bar is bent to an asymmetric (A)-seagull (N) shape, according to the TERCOM system, as the mirror image of the chest wall configuration.

5. Bar Dislocation Mechanism

Through my research of each case of bar displacement, it is proven that there are three mechanisms of bar dislocation. First, “bar flipping” is returning of the bar into its original position before rotation. It indicates the repair a complete failure. Second, “sliding of the bar” is a lateral sliding toward the left or right side according to asymmetry of the depression. Last, “hinge point disruption” is a strip of intercostal muscle structure at the hinge area which occurs when correcting heavy chest depressions. Appropriate remedies for each mechanism were proposed and applied by the author.

6. New CT Indices

To assess the degree of depression and asymmetry in a different angle, new indices utilizing CT scan was created by the
author. These are also useful tools to verify whether the repair is correct.

1. Depresssion Index (DI) = \(\frac{b}{a} \)

(CT Index (Haller Index, HI)) = \(\frac{c}{a} \)

2. Asymmetry Index (AI) = \(\frac{b}{a} \)

3. Eccentricity Index (EI) = \(\frac{b}{a} \)

4. Unbalance Index (UI) = \(\frac{\alpha}{\beta} \)

New Computerized Tomogram Indices

Park Technique (The Second Generation Techniques)

Surgical Techniques

A patient is placed in supine position and both arms are freely hung on overhead slings to avoid arm stretch. A pectus bar shaping is performed on the operating table by the principal surgeon (HJP), which makes it custom-fit to the patient’s chest wall morphology. One centimeter skin incisions are made on both mid-axillary lines. An introducer or the pectus clamp (Bicomet Microfixation, Jacksonville, FL, USA) was passed through the mediastinum with a tactile approach, or recently, specially designed video-scope guided approach (Pectoscope). A guide (20 Fr chest tube) followed by the bent bar is passed through. By rotating the pectus bar, the convexity of the bar lifts the depressed chest wall. Both ends of the pectus bar and hinge points are fixed to the adjacent ribs with pericostal sutures or recently with Claw Fixators. Hemo-vac catheters are inserted in the subcutaneous pockets around the pectus bar and/or pleural cavities. In cases of adults, teenagers, or patients with severe depressions, to avoid the heart injury and make the procedure easier, the Crane system is utilized to elevate the sternum before passing the introducer.

1. Bar Shaping

According to the morphologic classification and TERCOM system, the bar is tailor-made for each patient. The asymmetric bar is designed for eccentric asymmetry, seagull bar for unbalanced asymmetry, and combination of both for complex morphologies. Principally, to elevate the asymmetric chest wall depression selectively, convexity was localized to the corresponding portion of the bar (asymmetric bar), whereas to avoid the further elevation of the protruded part of the chest wall, a notch was created at the portion of the bar (seagull bar).

Asymmetric Bar Technique

Eccentric Type Repair

Seagull Bar Technique

Unbalanced Type Repair

2. Bar Fixation Technique (Multipoint Fixation, MPF)

Evolution progressed over a period in early experience and finally the multipoint fixation to the corresponding ribs by means of pericostal sutures (wire or absorbable) at the end of the bar plus
hinge point(s) (End-hole fixation + Hinge point fixation) settled as a fixation of choice. However this approach has been in the process of replacement by a recent invention – a new sutureless fixation device, the "claw fixator."

Multiple point Fixation Technique (5-Point Fixation): Pericostal wire or absorbable sutures

End-Hole (1-4) and Hinge Point Fixations (5)

3. Through-the-Skin Suture Technique (TTS)

Through-the-skin suture technique is a specialized technique for pericostal bar fixation, which is the entire suturing process is performed outside the small lateral incisions for bar insertion. First the targeted rib is first palpated and the suture needle is pierced directly through the overlying skin, passed around the rib and taken out, once again, through the skin. Then the sutured wires are then retrieved via subcutaneous dissection and finally pulled out through the incision. The hinge point fixation suture is made with the same technique. Pericostal sutures are passed through the end-hole of the bar and tied within the incision. With this trick, the skin incision remains small (1 cm), the size just allows the bar passage after all pericostal fixation sutures are made.

4. Techniques for Adults

This selected group of patients needs a special care during repair and in postoperative care. The most typical problem is that the adults' heavy and stiff chests cannot be elevated with a conventional pectus bar. In addition, the hinge system consisted of intercostal muscle bundles is not strong enough to sustain the bar for those heavy chests. To prevent intercostal muscle stripping and flattening of the shaped bars, the "crane technique" and "a compound bar" were instituted. Those are the milestone techniques to make the repair possible for adult patients. The "crane technique" is elevating the depressed sternum prior to rotating the bar in order to alleviate the pressure on the bar and hinge points. Briefly the technique employs a wire suturing to the bony tissue on the xiphisternal area or other portion of the sternum as necessary and lifting the wire suture and the sternum by an operating table-mounted retractor system. In the procedure, flipping the bar overzealously can result in major internal organ injury as well as tearing of the intercostals muscles at the hinge points resulting in insufficient chest wall elevation. The "crane" plays a paramount role at this stage of the operation. The crane elevates the chest wall off the internal organs to allow safe passage of the clamp and bar. Flipping the bar is much easier and hinge point degradation is prevented as well.

Crane Technique

5. Crest Compression Technique

The crest compression is the technique utilizing the "negative momentum." The bar actively compresses protrusions by placing the hinge point exactly on the crest. The compressing pressure was generated by a lever-action when rotating the bar on the crest which serves as a pivot.

Crest Compression Technique

\[\text{Crest} = \text{Hinge} \]
this conventional equipment provides barely a limited view to
larging the incision or making additional wounds. Furthermore,
in the safe passage of the clamp, but this usually requires en-
Use of video-scopic instruments has been instituted to assist
while passing the clamp past the lungs and heart is inherent.
injury such as cardiac perforation and devastating hemorrhage
In this minimally invasive approach, risk of major internal organ
1. Internal Visualizing Device: The “Pectoscope”
was 3.2%. Reoperation rate was 2.5%.
Total complication rate was 12.8% but major complication rate
indices were decreased after repair: DI (pre 2.89 to post 1,
To assess post-repair residual depression, asymmetry, and ec-
metric type was 58.2% and asymmetry was 41.8%.
The symmetric bar (n=917, 60.1%), asymmetric bar (n=609,
and crest compression (n=156, 10.2%) techniques were used.
The crane technique was employed for adult patients to elevate
ossified and heavy chests, or for severe depressions of any age
to facilitate the procedure (n=511, 33.5%).
To assess post-repair residual depression, asymmetry, and ec-
centricity, CT scan-calculated indices were utilized. All pectus
indices were decreased after repair: DI (pre 2.89 to post 1,
p<0.01), AI (pre 1.11 to post 1.03, p<0.01), and EI (pre 1.69 to
post 1, p<0.01).
Total complication rate was 12.8% but major complication rate
was 3.2%. Reoperation rate was 2.5%.

6. Parallel Bar Technique
When a single bar cannot elevate the entire depression since the
depression extends to the level of clavicle, an additional bar at
the upper chest can be used. In parallel bar technique, The main
(lower) bar insertion point corresponds to the main depression,
generally at 1 or 2 intercostal spaces below the nipple (6th to
7th intercostal space at the anterior axillary line). The second
(supplementary) bar is usually positioned above the nipple (3rd
or 4th intercostal space at the anterior axillary line).

Results
The single surgeon’s experience with 1,526 pectus excavatum
patients between August 1999 and September 2010 were
analyzed. Minimally invasive repair with the author’s technique
evolved chronologically were applied to all and no patient was
precluded from the repair due to morphological reasons.
Age ranged from 16 months to 53 years (mean of 10 years and
median of 8 years). Among them, 341 patients (22.4%) were
adults (age >/= 15 years). Male to female ratio was 4.2. Sym-
metric type was 58.2% and asymmetry was 41.8%.
The symmetric bar (n=917, 60.1%), asymmetric bar (n=609,
39.9%), seagull bar (n=275, 18.5%), parallel bar (n=259, 17%),
and crest compression (n=156, 10.2%) techniques were used.
The crane technique was employed for adult patients to elevate
ossified and heavy chests, or for severe depressions of any age
3. The Hinge Plate
The hinge plate (The Prime Med Co. Seoul, Korea) is a metal strip
with a concave cradle to embrace and sup-
port the pectus bar at the hinge points. The hinge plate is de-
cigned to prevent all the forces generated
from the lever action of the pectus bar and
all the vectors exert
to sustain the pec-
tus bar in the hinge.
All the forces creat-
ing intercostal muscle stripping (hinge destruction) are three
directional vectors. Vector 1 and 2 that are pressures directing
downward due to the chest wall weight and vector 3 is a force
exerting antero-downward sliding along the lower rib in the
intercostal space.
The cradle has a round bottom adjustable to the pectus bar
direction and works for protecting the hinge against the vectors
1 and 2. A spur is fashioned at the lower end of the cradle to
block the vector 3.

2. A New Bar-Fixation Device: The “Claw Fixator”
The Multi-point Fixation (MPF) method has successfully pre-
vented bar dislocation in over 800 consecutive patients includ-
ing asymmetry and adults and therefore made an enormous
contribution to settle this procedure effective. However, for
most surgeons, a blind wire suture placing around the rib cannot
be always easy and is not comfortably reproducible at times.
Also this was not without complications such as transient pneu-
mothorax. Thus this technique also needs to be updated to fit
for modern era of technology.
This new fixation device, the “Claw Fixator” is very small to
handle easily compare to conventional stabilizer and eliminates
invasive suture technique completely from the procedure. The
technique includes small plates and screws that are placed at
the end of the bar and hooked to nearby ribs to stabilize the
bars. A recent study ongoing has revealed that in pediatric pa-
tients, the efficacy of “Claw” is equivalent to the MPF technique
even with lower complication rates, so that now its applications
are expanding to adult patients.

3. The Hinge Plate
The hinge plate (The Prime Med Co. Seoul, Korea) is a metal strip
with a concave cradle to embrace and sup-
port the pectus bar at the hinge points. The hinge plate is de-
cigned to prevent all the forces generated
from the lever action of the pectus bar and
all the vectors exert
to sustain the pec-
tus bar in the hinge.
All the forces creat-
ing intercostal muscle stripping (hinge destruction) are three
directional vectors. Vector 1 and 2 that are pressures directing
downward due to the chest wall weight and vector 3 is a force
exerting antero-downward sliding along the lower rib in the
intercostal space.
The cradle has a round bottom adjustable to the pectus bar
direction and works for protecting the hinge against the vectors
1 and 2. A spur is fashioned at the lower end of the cradle to
block the vector 3.

Park Technique II (The Third Generation Techniques)
1. Internal Visualizing Device: The “Pectoscope”
In this minimally invasive approach, risk of major internal organ
injury such as cardiac perforation and devastating hemorrhage
while passing the clamp past the lungs and heart is inherent.
Use of video-scopic instruments has been instituted to assist
in the safe passage of the clamp, but this usually requires en-
largening the incision or making additional wounds. Furthermore,
this conventional equipment provides barely a limited view to
the compressed and displaced heart. In patient with very deep
depression, it is impossible to obtain a reliable view to a critical
point where the chest wall tightly contacts the heart.
A new device, the “pectoscope”, therefore developed in order
to fulfill this crucial inevitability. This consists of a curved hol-
low metal sheath with an observation deck at the tip, which ac-
cepts a flexible scopic device inside. Importantly this device has
3 functions all together in one piece (the Trinity device), spe-
cifically visualization, dissection, and a guide. The surgeon can
view the entire passage directly while dissecting with this de-
vice between the depressed chest wall and the heart, and then
finally use it as a guide. This device guarantees the safety 100%
without the need for additional instruments or incisions, and
ultimately making the procedure safe, easy and comfortable.

Journal of Clinical and Analytical Medicine | 89

Bar Dislocation Rates
Bar dislocation rates by Fixation Techniques
STB: stabilizer(conventional); MPF: multiple;
Point Fixation Technique; CFT: Claw Fixator

Bar Dislocation Rates by Surgeons
(Analysis of Published Data)

Park Technique II (The Third Generation Techniques)
1. Internal Visualizing Device: The “Pectoscope”
In this minimally invasive approach, risk of major internal organ
injury such as cardiac perforation and devastating hemorrhage
while passing the clamp past the lungs and heart is inherent.
Use of video-scopic instruments has been instituted to assist
in the safe passage of the clamp, but this usually requires en-
largening the incision or making additional wounds. Furthermore,
this conventional equipment provides barely a limited view to
References

9. Park HJ, Jeong JY, Kim KT, Choi YH. A New videoscopic device to avoid cardiac injury in minimally invasive pectus excavatum repair: the Pectoscope. (in press)